A Learning-rate Schedule for Stochastic
Gradient Methods to Matrix Factorization

Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin

Department of Computer Science
National Taiwan University, Taipei, Taiwan
{d01944006 ,r01922139,r01922136, cjlin}@csie .ntu.edu.tw

Abstract. Stochastic gradient methods are effective to solve matrix fac-
torization problems. However, it is well known that the performance of
stochastic gradient method highly depends on the learning rate schedule
used; a good schedule can significantly boost the training process. In this
paper, motivated from past works on convex optimization which assign
a learning rate for each variable, we propose a new schedule for matrix
factorization. The experiments demonstrate that the proposed schedule
leads to faster convergence than existing ones. Our schedule uses the
same parameter on all data sets included in our experiments; that is, the
time spent on learning rate selection can be significantly reduced. By
applying this schedule to a state-of-the-art matrix factorization pack-
age, the resulting implementation outperforms available parallel matrix
factorization packages.

Keywords: Matrix factorization, stochastic gradient method, learning
rate schedule

1 Introduction

Given an incomplete matrix R € R™*", matrix factorization (MF) finds two
matrices P € R¥*™ and Q € R¥*" such that r,, ~ plq,,Vu,v € 2, where 2
denotes the indices of the existing elements in R, r,, , is the element at the uth
row and the vth column in R, p, € R* is the uth column of P, q, € R is the
vth column of @), and k is the pre-specified number of latent features. This task
is achieved by solving the following non-convex problem

min 3 pea(ue = Pudo)” + AP + g0]?), (1)

where) is a regularization parameter. Note that the process to solve P and @)
is referred to as the training process. To evaluate the quality of the used solver,
we can treat some known elements as missing in the training process and collect

them as the test set. Once P and @ are found, root-mean-square error (RMSE)
on the test set is often used as an evaluation criterion. It is defined as

1 2 — T
\/‘Qteﬁt‘ Z(u,v)eﬂtost Cu,vs Cuw = Tu,w = Py ys (2)

2 Chin et al.

where (2.5t represents the indices of the elements belonging to test set.

Matrix factorization is widely used in recommender systems [I1], natural lan-
guage processing [I6], and computer vision [9]. Stochastic gradient methocﬂ(SG)
is an iterative procedure widely used to solve (1), e.g., [1[142]. At each step, a
single element r,, , is sampled to obtain the following sub-problem.

(ruw = Pu @) + A(llpul” + g,). (3)
The gradient of is

1 1
9u = 5(_6u,qu +)\pu)a h’U = 5(_6“7711)11 + Aqv) (4)

Note that we drop the coefficient 1/2 to simplify our equations. Then, the model
is updated along the negative direction of the sampled gradient,

Py < Py — N9, Qy < @, — Nhey, (5)

where 7 is the learning rate. In this paper, an update of is referred to as an
iteration, while |{2] iterations are called an outer iteration to roughly indicate
that all 7, , have been handled once. Algorithm [I| summarizes the SG method
for matrix factorization. In SG, the learning rate can be fixed as a constant
while some schedules dynamically adjust n in the training process for faster
convergence [4]. The paper aims to design an efficient schedule to accelerate the
training process for MF.

The rest sections are organized

as follows. Section [2] investigates the 44 for matrix factorization.

?Xls_tmg schedules for mfmtrlx factor- Require: Z: user-specified outer iterations
ization and a per-coordinate sched- 1. f5r » « 1 to Z do

ule for online convex problems. Note 9. for i + 1 to |2 do

that a per-coordinate schedule assigns

each variable a distinct learning rate. calculate sub-gradient by

We improve upon the per-coordinate update p, and g, by

schedule and propose a new schedule 6: end for

in Section [3] In Section [} experimen- _7: end for

tal comparisons among schedules and state-of-the-art packages are exhibited.

Finally, Section [5| summarizes this paper and discusses potential future works.

In summary, our contributions include:

1. We propose a new schedule that outperforms existing schedules.

2. We apply the proposed schedule to an existing package. The resulting im-
plementation, which will be publicly available, outperforms state-of-the-art
parallel matrix factorization packages.

2 Existing Schedules

In Section we investigate three schedules that are commonly used in matrix
factorization. The per-coordinate schedule that inspired the proposed method is
introduced in Section 2.2

Algorithm 1 Stochastic gradient meth-

sample 74, from R

L It is often called stochastic gradient descent method. However, it is actually not a
“descent” method, so we use the term stochastic gradient method in this paper.

A Learning schedule for SG to MF 3

2.1 Existing Schedules for Matrix Factorization
Fixed Schedule (FS) The learning rate is fixed throughout the training pro-
cess. That is, n equals to 19, a pre-specified constant. This schedule is used in,
for example, [§].
Monotonically Decreasing Schedule (MDS) This schedule decreases the
learning rate over time. At the zth outer iteration, the learning rate is
. @
R

where o and (are pre-specified parameters. In [19], this schedule is used. For
general optimization problems, two related schedules [T2J6/10] are
@ @

=y = 0 (6)
but they are not included in some recent developments for matrix factorization
such as [4/19]. Note that [4] discusses the convergence property for the use of (6,
but finally chooses another schedule, which is introduced in the next paragraph,
for faster convergence.
Bold-driver Schedule (BDS) Some early studies on neural networks found
that the convergence can be dramatically accelerated if we adjust the learn-
ing rate according to the change of objective function values through iterations
[I5/1]. For matrix factorization, [4] adapts this concept and considers the rule,

i1 Jan® if A, <0
Bn* otherwise,

U (7)
where a € (1,00), 8 € (0,1), and ° € (0,00) are pre-specified parameters, and
A, is the difference on the objective function in between the beginning and
the end of the zth outer iteration. Clearly, this schedule enlarges the rate when
the objective value is successfully decreased, but reduces the rate otherwise.
2.2 Per-coordinate Schedule (PCS)

Some recent developments discuss the possibility to assign the learning rate
coordinate-wisely. For example, ADAGRAD [3] is proposed to coordinate-wisely
control the learning rate in stochastic gradient methods for convex online opti-
mization. For matrix factorization, if r, , is sampled, ADAGRAD adjusts two
matrices G,, and H, using

Gu Gutg.90. Hy— H,+h,h,
and then updates the current model via
Py & Py — nOGll/zgu, q, < 49, — 7)0H171/2hv' (8)

ADAGRAD also considers using only the diagonal elements because matrix in-
version in is expensive. That is, G,, and H, are maintained by

(9.)7 (hy)?
G, G, + , H,<+ H,+ . 9)
(9.)7 (ho)?

PengChuan
高亮

4 Chin et al.

We consider the setting of using diagonal matrices in this work, so the learning
rate is related to the squared sum of past gradient elements.

While ADAGRAD has been shown to be effective for online convex clas-
sification, it has not been investigated for matrix factorization yet. Similar to
ADAGRAD, other per-coordinate learning schedules such as [20/T3] have been
proposed. However, we focus on ADAGRAD in this study because the compu-
tational complexity per iteration is the lowest among them.

3 Owur Approach

Inspired by PCS, a new schedule, reduced per-coordinate schedule (RPCS), is
proposed in Section [3.I] RPCS can reduce the memory usage and computa-
tional complexity in comparison with PCS. Then, in Section [3:2] we introduce a
technique called twin learners that can further boost the convergence speed of
RPCS. Note that we provide some experimental results in this section to justify
our argument. See Section El for the experimental settings such as parameter
selection and the data sets used.

3.1 Reduced Per-coordinate Schedule (RPCS)

The cost of imple.rnenting FS, MDS, Algorithm 2 One iteration of SG algo-
or BDS schedules is almost zero. How- 154111 when RPCS is applied.

ever, the overheads incurred by PCS
can not be overlooked. First, each co-

—_

T
eu,v — 'ru,u - pu qv

. . 2: G+ 0, H+0

ordinate of p, and g, has its own 3 a3 7
: 2 2
learning rate. Maintaining G,, and H, Ha < o(Gu)"E, 1 = 1j0(Ho)
4: for d <+ 1to k do

may need O((m + n)k) extra space. . (9.)0 —eun(a,)a+ AD)d
Second, at each iteration, O(k) addi- . (hu)d “ —e (p”)d +)\(q“)d
tional operations are needed for cal- . G+ G+(g ’)3’ “ H HU+ (hy)?
culating and using diagonal elements §g. (P)a < (Dy)a — 1u(g,)a
of G, and H,. 9: (@,)a < (q,)a — Mv(hv)d

These overheads can be dramat- 10: end for B B
ically reduced if we apply the same 11: Gu + Gu+G/k, H, + H,+ H/k

learning rate for all elements in p,, (or
q,). Specifically, at each iteration, G, and H, are reduced from matrices to
scalars. Instead of @, G, and H, are now updated by

T hh
Gy Gy + g—“kg“, Hy = Hy + =2 (10)
In other words, the learning rate of p,, or g, is the average over its k coordinates.
Because each p,, or g, has one learning rate, only (m+n) additional values must
be maintained. This storage requirement is much smaller than (m+n)k of PCS.
Furthermore, the learning rates,

7]0(Gu)*% and no(Hv)*%,

become scalars rather than diagonal matrices. Then the update rule (8)) is re-
duced to that in . However, the cost of each iteration is still higher than that
of the standard stochastic gradient method because of the need to maintain G,

A Learning schedule for SG to MF 5

and H, by (10). Note that the O(k) cost of s comparable to that of ().
Further, because g, and h, are used in both (10} and , they may need to
be stored. In contrast, a single for loop for does not require the storage of
them. We detailedly discuss the higher cost than by considering two possible
implementations.

1. Store g, and h,,.

— A for loop to calculate g,,h, and G, H,. Then g, and h, vectors are

stored.

— A for loop to update p,,, q, by .

2. Calculate g,, and h, twice.

— A for loop to calculate g,,, h, and then G, H,.

— A for loop to calculate g,,, h, and update p,,, g, by (8).

Clearly, the first approach requires extra storage and memory access. For the
second approach, its second loop is the same as , but the first loop causes
that each SG iteration is twice expensive. To reduce the cost, we decide to use
G, and H, of the previous iteration. Specifically, at each iteration, we can use a
single for loop to calculate g,, and h,,, update p,, and g, using past G, and H,,,
and calculate gfgu and hfhv to obtain new G, and H, for the next iteration.
Details are presented in Algorithm [2] In particular, we can see that in the for
loop, we can finish the above tasks in an element-wise setting. In compared with
the implementation for , Line 7 in Algorithm [2[is the only extra operation.
Thus, the cost of Algorithm [2| is comparable to that of a standard stochastic
gradient iteration.

In Figure[T] we check the convergence speed of PCS and RPCS by showing the
relationship between RMSE and the number of outer iterations. The convergence
speeds of PCS and RPCS are almost identical. Therefore, using the same rate
for all elements in p,, (or g,) does not cause more iterations. However, because
each iteration becomes cheaper, a comparison on the running time in Figure
shows that RPCS is faster than PCS.

We explain why using the same learning rate for all elements in p,, (or g,)
is reasonable for RPCS. Assume p,,’s elements are the same,

(pu)l == (pu)kH

and so are (g,,)’s elements. Then implies that all elements in each of g, and
h, has the same value. From the calculation of G, H, in @ and the update
rule (8)), elements of the new p, (or g,) are still the same. This result implies
that learning rates of all coordinates are the same throughout all iterations. In
our implementation of PCS, elements of p, and g, are initialized by the same
random number generator. Thus, if each element is treated as a random variable,
their expected values are the same. Consequently, p,,’s (or g,,’s) initial elements
are identical in statistics and hence our explanation can be applied.

3.2 Twin Learners (TL)

Conceptually, in PCS and RPCS, the decrease of a learning rate should be con-
servative because it never increases. We observe that the learning rate may be

6 Chin et al.

~PCS
-RPCS|

0.95] ~PCS

[-RPCS]

10, 20 5 10 15 5 10 20
Outer Iterations Outer lterations Outer lterations

(a) MovieLens (b) Netflix (c) Webscope-R1

~PCS ~PCS
114 ~RPCS| 0.6 -RPCS|

RMSE

0 2 30 0 10 40 50

4 6 10 .20 20 30
Outer Iterations Outer Iterations Outer Iterations

(d) Yahoo!Music (e) Webscope-R2 (f) Hugewiki
Fig.1: A comparison between PCS and RPCS: convergence speed.

~FCsS , <pCs 25
~RPCS \ ~RPCS| 26y
0.98 | .
w
20.96
Z0.
0.94)
- 0.9 .
0 2 4 6 8 0 10 20 30 40 0 5 10 15 20
Time (sec.) Time (sec.) Time (sec.)
(a) MovieLens (b) Netflix (c) Webscope-R1
245
~PCS
24 115 -RPCS|
%23.5 u
z 23 z 11
22.5|
2 1.05
0 20 40 60 80 0 100 200 300 "0 1000_ 2000 3000
Time (sec.) Time (sec.) Time (sec.)

(d) Yahoo!Music (e) Webscope-R2 (f) Hugewiki
Fig.2: A comparison between PCS and RPCS: running time.

too rapidly decreased at the first few updates. The reason may be that the ran-
dom initialization of P and @ causes comparatively large errors at the beginning.
From , the gradient is likely to be large if e, , is large. The large gradient
further results in a large sum of squared gradients, and a small learning rate
M0(G) ™2 or 1o(H,) 2.

To alleviate this problem, we introduce a strategy called twin learners which
deliberately allows some elements to have a larger learning rate. To this end, we
split the elements of p, (or q,) to two groups {1,...,ks} and {ks + 1,...,k},
where the learning rate is smaller for the first group, while larger for the second.
The two groups respectively maintain their own factors, G5 and G2t via

(Qu);}Fs+1;k(gu)ks+1:k

k — ks
(11)

(gu)’{:ks (gu>11ks

GZIOW « Gilow + Giast . Giast +

A Learning schedule for SG to MF 7

o
o

~SLOW R Sow ~SLOW|
0.08 FAST 0.08 FAST : FAST
o FRPCS| o -RPCS| o ~RPCS
3] 5 0.08]
@ 0.06 @ 0.06] o ‘k«
g g 2
£0.04 ¥ £0.04 £0.0§
3 3 3
0.02) 0.02) 0.04)
4 6 8 10 12 2 6 8 10 12 14 16 18 °%% 4 6 8 0 12
Outer Iterations’ Outer lIterations Outer Iterations’
(a) MovieLens (b) Netflix (c) Webscope-R1
1 1 01
0. wsow] ~SLOW i ~SLow
FAST FAST 0.08}
20.08 [FRPCS| o 0.08 -RPCS| 2 [-RPCS
& & 0.06| %’0.06
20.08 \xﬁ g g
5 50.04 £0.04
3 3 3
0.04) 0.02) 0.02]
e
00— =% 4 6 _ 8 10 12 8 16 24 32 8 16 24 32 40 48
Outer Iterations Outer Iterations Outer lterations
(d) Yahoo!Music (e) Webscope-R2 (f) Hugewiki

Fig.3: A comparison among the average learning rates of the slow learner
(SLOW), the fast learner (FAST), and RPCS. Note that we use 9 = 0.1 and
initial G, = H, = 1 following the same settings in our experimental section.
Hence the initial learning rate is 0.1.

We refer to the first group as the “slow learner,” while the second group as the
“fast learner.” To make GI* smaller than G5°%, we do not apply the second
rule in to update foSt at the first outer iteration. The purpose is to let the
slow learner “absorb” the sharp decline of the learning rate brought by the large
initial errors. Then the fast learner can maintain a larger learning rate for faster
convergence. We follow the setting in Section to use GSlow, Hslow Gfast and
Hf2st of the previous iteration. Therefore, at each iteration, we have

1. One for loop going through the first k, elements to calculate (g,,)1:x., (Pv)1:k. s
update (p,)1:k., (@,)1:k., and obtain the next GSlow, Fslow,

2. One for loop going through the remaining k — ks elements to calculate
(9u)kot1:65 (Ro)k 41k, update (Py)k.+1:k, (Gy)k.+1:k, and obtain the next
Gfast Hfast.

u ’ v
Figure [3| shows the average learning rates of RPCS (TL is not applied), and
slow and fast learners (TL is applied) at each outer iteration. For RPCS, the
average learning rate is reduced by around half after the first outer iteration.

When TL is applied, though the average learning rate of the slow learner drops

even faster, the average learning rate of the fast learner can be kept high to

ensure fast learning. A comparison between RPCS with and without TL is in

Figure 4} Clearly, TL is very effective. In this paper, we fix ks as 8% of k. We

also tried {2, 4, 8, 16}%, but found that the performance is not sensitive to the

choice of k;.

4 Experiments

We conduct experiments to exhibit the effectiveness of our proposed schedule.
Implementation details and experimental settings are respectively shown in Sec-
tions[f:I]and[4.2] A comparison among RPCS and existing schedules is in Section
Then, we compare RPCS with three state-of-the-art packages on both ma-

8 Chin et al.

~RPCS
[>TL+RPCS|

“RPCS “RPCS \
-TL+RPCS PTLRPCS|

0 5 10 15 20 0 5

" 10 15 5 10
Outer Iterations Outer Iterations Outer lterations

(a) MovieLens (b) Netflix (c) Webscope-R1

~RPCS \ ~RPCS
[>TL+RPCS| 0.6 | [>TL+RPCS|

~RPCS
> TL+RPCS]

60 "o 10

5 10 20, .40 20 30
Outer lterations Outer Iterations Outer Iterations

(d) Yahoo!Music (e) Webscope-R2 (f) Hugewiki
Fig.4: A comparison between RPCS with/without TL.

trix factorization and non-negative matrix factorization (NMF) in Sections
and respectively.
4.1 Implementation

For the comparison of various schedules, we implement them by modifying
LIBMFE| which is a parallel SG-based matrix factorization package [21]. We choose
it because of its efficiency and the ease of modification. Note that TL is applied to
RPCS in all experiments. In LIBMF, single-precision floating points are used for
data storage, and Streaming SIMD Extensions (SSE) are applied to accelerate
the computation.

The inverse square root operation required in is very expensive if it is
implemented in a naive way by writing 1/sqrt(-) in C++. Fortunately, SSE
provides an instruction _mm_rsqrt_ps(-) to efficiently calculate the approximate
inverse square roots for single-precision floating-point numbers.

4.2 Settings

Data Sets Six data sets listed in Table [[l are used. We use the same train-
ing/test sets for MovieLens, Netflix, and Yahoo!Music following [2I], and the
official training/test sets for Webscope-R1 and Webscope-R2E| For Hugewikiﬂ
the original data set is too large for our machine, so we sample first half of the
original data. Within this sub-sampled data set, we randomly sample 1% as the
test set, and using the remaining for training.
Platform and Parameters We run the experiment on a machine with 12
cores on two Intel Xeon E5-2620 2.0GHz processors and 64 GB memory. We
ensure that no other heavy tasks are running on the same computer.

A higher number of latent features often leads to a lower RMSE, but needs
a longer training time. From our experience, 100 latent features is an accept-

2 http://www.csie.ntu.edu.tw/~cjlin/libmf
3 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
* http://graphlab.org/downloads/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libmf
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://graphlab.org/downloads/datasets/

A Learning schedule for SG to MF 9

- RMSE
Data Set m n k A #training #test MF NMF
MovieLens 71,567 65,133 100 0.05 9,301,274 698,780 0.831 0.835
Netflix 2,649,429 17,770 100 0.05 99,072,112 1,408,395 0.914 0.916
Webscope-R1{1,948,883 1,101,750 100 1 104,215,016 11,364,422 23.36 23.75
Yahoo!Music|1,000,990 624,961 100 1 252,800,275 4,003,960 21.78 22.10
Webscope-R2(1,823,180 136,737 100 0.05 699,640,226 18,231,790 1.031 1.042
Hugewiki 39,706 25,000,000 100 0.05 1,703,429,136 17,202,478 0.502 0.504

Table 1: Data statistics, parameters used in experiments, and the near-best
RMSE’s (see Section for explanation) on all data sets.

able balance between speed and RMSE, so we use it for all data sets. For the
regularization parameter, we select the one that leads to the best test RMSE
among {2, 1, 0.5, 0.1, 0.05, 0.01} and present it in Table In addition, P and @
are initialized so that every element is randomly chosen between 0 and 0.1. We
normalize the data set by its standard deviation to avoid numerical difficulties.
The regularization parameter and the initial values are scaled by the same factor
as well. A similar normalization procedure has been used in [I§].

The best parameters of each FS| MDS |IBDS|PCS
schedule are listed in Table] They Data Set mwl o Bl ml no
are the fastest setting to reach WoyieLens [0.005/0.05 0.1]0.05] 0.1
1.005 times the best RMSE obtained pyetf1ix 0.00510.05 0.1l 0.05] 0.1
by all methods under all parame- yepscope-R1(0.005/0.05 0.1/ 0.01| 0.1
ters. We consider such a “near-best” yahoo!Music| 0.01/0.05 0.05]0.01| 0.1
RMSE to avoid selecting a parameter ygbscope-R2|0.005/0.05 0.1/ 0.05| 0.1
that needs unnecessarily long running gygewiki 0.0110.05 0.01] 0.01] 0.1

time. Without this mechanism, our
comparison on running time can be-
come misleading. Note that PCS and
RPCS shares the same 7. For BDS, we follow [4] to fix « = 1.05 and 8 = 0.5,
and tune only the parameter 7y. The reason is that it is hard to tune three
parameters 7, «, and 3 together.

Table 2: The best parameters for each
schedule used.

4.3 Comparison among Schedules

In Figure |5] we present results of comparing five schedules including FS, MDS,

BDS, PCS, and RPCS. RPCS outperforms other schedules including the PCS

schedule that it is based upon.

4.4 Comparison with State-of-the-art Packages on Matrix
Factorization

We compare the proposed schedule (implemented based on LIBMF, and denoted

as LIBMF++) with the following packages.

— The standard LIBMF that implements the FS strategy.

— An SG-based package NOMAD [19] that has claimed to outperform LIBMF.

- LIBPMFE| it implements a coordinate descent method CCD++ [I7].

5 http://www.cs.utexas.edu/~rofuyu/libpmf

http://www.cs.utexas.edu/~rofuyu/libpmf

10

Chin et al.

RMSE

Time (sec.)

(a) MovieLens

5 10 15
Time (sec.)

(b) Netflix

20 40 60 80
Time (sec.)

(c) Webscope-R1

100
Time (sec.)

(d) Yahoo!Music

100 200
Time (sec.)

(e) Webscope-R2

. 1000
Time (sec.)

(f) Hugewiki

1500

Fig.5: A comparison among different schedules.

0.04l ‘[‘.32”&5 ! “NOMAD ~NOMAD
LIBPMF LIBPMF
0.92) -~LIBMF 0.98 ~LIBMF %3 ~LIBMF
4 09 +LIBMF++ bLBMEw o8 [~LIBMF++]
£0s8 g245
0.86] 24!
0.84 23.
0) 6 0 10 20 30 40 50 0 50 1 150
Time (sec.) Time (sec.) Time (sec.)
(a) MovieLens (b) Netflix (c) Webscope-R1
0.
“NOMAD CCD++
CCD
UBPME | FPSG 0.58 FPsG
~LIBMF 15 L FPSGa4] [>FPSG+4]
PLBMF| w058
2 3
g T .54
052
1.05)
05§

50 100 150
Time (sec.)

(d) Yahoo!Music

200

200 0

400 60 800 1000
Time (sec.)

(e) Webscope-R2

500 1000

Time (sec.)

(f) Hugewiki

1500

Fig.6: A comparison among packages for MF.

For all packages, we use single-precision storageﬂ and 12 threads. The comparison
results are presented in Figure [6] For NOMAD, we use the same « and 8 parame-
ters in [I9] for Netflix and Yahoo!Music, and use parameters identical to MDS
for MovieLens and Webscope-R1l. We do not run NOMAD on Webscope-R2 and
Hugewiki because of the memory limitation. Taking the advantage of the pro-
posed schedule RPCS, LIBMF++ is significantly faster than LIBMF and LIBPMF.
Our experimental results for NOMAD are worse than what [I9] reports. In [19],
NOMAD outperforms LIBMF and CCD++, but our experiments show an opposite re-
sult. We think the reason may be that in [I9], 30 cores are used and NOMAD may
have comparatively better performance if using more cores.

6 LIBPMF is implemented using double precision, but we obtained a single-precision
version from its authors.

A Learning schedule for SG to MF 11

LIBPMF TIBPVF 32 LIBPMF
~LIBMF 11 ~LIBMF ~LIBMF
0.95 [*LIBMF ++] : l~LIBMF++ 30 [~LIBMF-++
w w
8 | 228
T 09 g
26
0.851 " - 24
0 1 2 3 4 5 0 10 20 30 40 50 0 20 40 60 80 100
Time (sec.) Time (sec.) Time (sec.)
(a) MovieLens (b) Netflix (c) Webscope-R1
2 LIBPMF 07 LIBPMF
245 ~LIBMF Myl ~LIBMF
PLIBMF+4+] 1.15 . LIBMF++ 0.65 [~LIBMF++]
2] # 2]
2235 2 08
o o
* 055 \
225
0.5
0 50 100 150 200 200 400 600 800 1000 1200 0 500 1000 1500 2000
Time (sec.) Time (sec.) Time (sec.)
(d) Yahoo!Music (e) Webscope-R2 (f) Hugewiki

Fig.7: A comparison among packages for NMF.

4.5 Comparison with State-of-the-art Methods for Non-negative
Matrix Factorization (NMF)

Non-negative matrix factorization [9] requires that all elements in P and @ are

non-negative. The optimization problem is

: T, \2 2 2
IE,ICSI Z(u,u)eﬂ(ru,v _puqv) + >‘(Hpu” + ||qUH)

subject to Py, >0, Qqp >0, Vd e {1,...,k}, ue{l,...,m},ve{l,...,n}.

SG can perform NMF by a simple projection [4], and the update rules used are

p, < max (0,p, —ng,), 4q, < max(0,q, —nh,),

where the max operator is element-wise. Similarly, the coordinate descent method
in LIBPMF [5] solves NMF by projecting the negative value back to zero at each
update. Therefore, except NOMAD, all packages used in the previous experiment
can be applied to NMF. We compare them in Figure [7]

A comparison between Figure [f] and Figure [7] shows that all methods con-
verge slower for NMF. This result seems to be reasonable because NMF is a more
complicated optimization problem. Interestingly, we see the convergence degra-
dation is more severe for CCD++ (LIBPMF) than SG (LIBMF and LIBMF++). Here
we provide a possible explanation. To update p, once, CCD++ goes through
elements in the uth row of the rating matrix k times (for details, see [17]), while
SG needs only an arbitrary element in the same row. Therefore, CCD++ per-
forms a more expensive but potentially better update. However, such an update
may become less effective because of projecting negative values back to zero.
That is, even though the update accurately minimizes the objective value, the
result after projection is not as good as in standard matrix factorization.

5 Conclusions

In this paper, we propose a new and effective learning-rate schedule for SG meth-
ods applied to matrix factorization. It outperforms existing schedules according

12

Chin et al.

to the rich experiments conducted. By using the proposed method, an extension
of the package LIBMF is shown to be significantly faster than existing packages on
both standard matrix factorization and its non-negative variant. The experiment
codes are publicly available at

http://www.csie.ntu.edu.tw/~cjlin/libmf/exps

Finally, we plan to extend our schedule to other loss functions such as logistic

loss and squared hinge loss.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Battiti, R.: Accelerated backpropagation learning: Two optimization methods.
Complex systems 3(4), 331-342 (1989)

Chen, P.L., Tsai, C.T., Chen, Y.N., Chou, K.C., Li, C.L., et al.: A linear ensemble
of individual and blended models for music rating prediction. In: ACM SIGKDD
KDD-Cup WorkShop (2011)

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. JMLR 12, 2121-2159 (2011)

Gemulla, R., Nijkamp, E., Haas, P.J., Sismanis, Y.: Large-scale matrix factorization
with distributed stochastic gradient descent. In: KDD. pp. 69-77 (2011)

Hsieh, C.J., Dhillon, I.S.: Fast coordinate descent methods with variable selection
for non-negative matrix factorization. In: KDD (2011)

Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression
function. The Annals of Mathematical Statistics 23(3), 462-466 (1952)

Koren, Y., Bell, R.: Advances in collaborative filtering. In: Ricci, F., Rokach, L.,
Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 145-186.
Springer US (2011)

Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recom-
mender systems. Computer 42(8), 30-37 (2009)

Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401, 788-791 (1999)

Polyak, B.T.: A new method of stochastic approximation type. Avtomat. i Tele-
mekh. 7, 98-107 (1990)

Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook.
In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems
Handbook, pp. 1-35. Springer (2011)

Robbins, H., Monro, S.: A stochastic approximation method. The Annals of Math-
ematical Statistics 22(3), 400407 (1951)

Schaul, T., Zhang, S., LeCun, Y.: No more pesky learning rates. In: ICML. pp.
343-351 (2013)

Takécs, G., Pildszy, 1., Németh, B., Tikk, D.: Scalable collaborative filtering ap-
proaches for large recommender systems. JMLR 10, 623-656 (2009)

Vogl, T., Mangis, J., Rigler, A.; Zink, W., Alkon, D.: Accelerating the convergence
of the back-propagation method. Biological Cybernetics 59(4-5), 257-263 (1988)
Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix
factorization. In: SIGIR (2003)

Yu, H.F., Hsieh, C.J., Si, S., Dhillon, I.S.: Scalable coordinate descent approaches
to parallel matrix factorization for recommender systems. In: ICDM (2012)

Yu, Z.Q., Shi, X.J., Yan, L., Li, W.J.: Distributed stochastic ADMM for matrix
factorization. In: CIKM (2014)

http://www.csie.ntu.edu.tw/~cjlin/libmf/exps

19.

20.
21.

A Learning schedule for SG to MF 13

Yun, H., Yu, H.F., Hsieh, C.J., Vishwanathan, S., Dhillon, I.S.: Nomad: Non-
locking, stochastic multi-machine algorithm for asynchronous and decentralized
matrix completion. In: VLDB (2014)

Zeiler, M.D.: ADADELTA: An adaptive learning rate method. CoRR (2012)
Zhuang, Y., Chin, W.S., Juan, Y.C., Lin, C.J.: A fast parallel SGD for matrix
factorization in shared memory systems. In: RecSys (2013)

	A Learning-rate Schedule for Stochastic Gradient Methods to Matrix Factorization

