
LIBMF: A Library for Parallel Matrix Factorization in
Shared-memory Systems

Wei-Sheng Chin d01944006@csie.ntu.edu.tw
Department of Computer Science
National Taiwan University
Taipei, Taiwan

Bo-Wen Yuan r03944049@csie.ntu.edu.tw
Department of Computer Science
National Taiwan University
Taipei, Taiwan

Meng-Yuan Yang b01902037@csie.ntu.edu.tw
Department of Computer Science
National Taiwan University
Taipei, Taiwan

Yong Zhuang r01922139@csie.ntu.edu.tw
Department of Computer Science
National Taiwan University
Taipei, Taiwan

Yu-Chin Juan r01922136@csie.ntu.edu.tw
Department of Computer Science
National Taiwan University
Taipei, Taiwan

Chih-Jen Lin cjlin@csie.ntu.edu.tw

Department of Computer Science

National Taiwan University

Taipei, Taiwan

Editor:

Abstract

Matrix factorization (MF) plays a key role in many applications such as recommender
systems and computer vision, but MF may take long running time for handling large
matrices commonly seen in the big data era. Many parallel techniques have been proposed
to reduce the running time, but few parallel MF packages are available. Therefore, we
present an open source library, LIBMF, based on recent advances of parallel MF for shared-
memory systems. LIBMF includes easy-to-use command-line tools, interfaces to C/C++
languages, and comprehensive documentation. Our experiments demonstrate that LIBMF
outperforms state of the art packages. LIBMF is BSD-licensed, so users can freely use,
modify, and redistribute the code.

Keywords: Matrix factorization, non-negative matrix factorization, binary matrix fac-
torization, logistic matrix factorization, one-class matrix factorization, stochastic gradient
method, adaptive learning rate, parallel computation

1



1. Introduction

Matrix factorization (MF) and its variants cover a wide range of applications including
recommender systems, link prediction, image processing, and document clustering. Al-
though parallel MF has been widely investigated in recent years, it is still not easy to find
a MF package supporting both rich formulations and parallel computation. For example,
the parallel MF algorithm in LIBPMF1 is known to be state of the art, but LIBPMF can
only solve real-valued matrix factorization with a squared loss and L2-norm regularization.
Some packages (e.g., scikit-learn,2 mlpack,3 and nimfa4) support a variety of MF problems,
but unfortunately they do not implement parallel MF algorithms published in recent five
years. We thus develop LIBMF for solving a family of MF problems based on the tech-
niques proposed in Chin et al. (2015a) and Chin et al. (2015b) targeting at shared-memory
systems with multi-core CPUs (e.g., mordern PCs). Many computational issues were ad-
dressed to make LIBMF efficient. Our experiments show that LIBMF is faster than state
of the art packages. Moreover, LIBMF allows users to use their disk as a buffer to factor-
ize a huge matrix that may not fit into their memory. LIBMF is released under BSD license at

http://www.csie.ntu.edu.tw/~cjlin/libmf/ .

This paper is organized as follows. Section 2 introduces LIBMF in detail. Problems
solved by LIBMF are presented in Section 2.1 and we demonstrate the practical usage in
Section 2.2. The documentation is summarized in Section 2.3. Comparisons of LIBMF and
state of the art packages are shown in Section 3. Finally, we conclude in Section 4. We
provide the implementation details in a supplementary document.5

2. The Software Package

LIBMF provides efficient parallel MF solvers with rich documentation for a family of MF
problems. For practical usage, users can directly run LIBMF using command-line instruc-
tions, make a C/C++ function call, or use the third-party R interface. LIBMF is portable
by following the C++11 standard and can be complied on Unix-like systems as well as
Microsoft Windows.

2.1 Problems Solved by LIBMF

In general, MF is a process to find two factor matrices, P ∈ Rk×m and Q ∈ Rk×n, to describe
a given m-by-n training matrix R in which some entries may be missing. MF can be found
in many applications, but we only use collaborative filtering in recommender systems as
examples. We further assume that the entries of R are the historical users’ preferences for
merchandises, and the task on hand is to predict unobserved user behavior (i.e., missing
entries in R) to make a suitable recommendation. Let u and v stand for row index and
column index, respectively. For rating prediction (e.g., Koren et al., 2009), the entry value
ru,v ∈ R indicates that the vth item was rated ru,v by the uth user. Once P and Q are

1. http://www.cs.utexas.edu/~rofuyu/libpmf
2. http://scikit-learn.org/stable/
3. http://www.mlpack.org
4. http://nimfa.biolab.si/
5. http://www.csie.ntu.edu.tw/~cjlin/papers/libmf/libmf_supp.pdf

2



learned, a missing rating at the (u′, v′) entry can be predicted by the inner product of the
u′th column of P (i.e., pu′) and the v′th column of Q (i.e., qv′). It means that we can
generate the predicted scores on all items for a user, and then the one with highest score
may be recommended. Sometimes, the users preferences recorded may be binary signals
(e.g., “like” or “dislike”); for example, Das et al. (2007). The entry ru,v is positive if we
know that the uth user likes the vth item, and vice versa. In this case, we can use the sign
of pT

u′qv′ as the prediction value of an unobserved signal ru′,v′ . As a result, the domain of
the entries in R is allowed to be either real values R or a binary set {−1, 1} to cover the
two scenarios.

LIBMF supports two types of matrix factorization, real-valued matrix factorization
(RVMF) and binary matrix factorization (BMF). RVMF aims to find P and Q to approxi-
mate the values of entries as accurate as possible while BMF focuses on learning the correct
signs of entries. Both RVMF and BMF can be formulated as a non-convex optimization
problem

min
P,Q

∑
(u,v)∈R

[
f (pu, qv; ru,v) + µp ‖pu‖1 + µq ‖qv‖1 +

λp
2
‖pu‖

2
2 +

λq
2
‖qv‖

2
2

]
, (1)

where ru,v is the (u, v) entry of R, f(·) is a non-convex loss function of pu and qv, and µp,
µq, λp, and λq are regularization coefficients. For RVMF, the loss function can be a squared
loss, an absolute loss, or generalized KL-divergence. If R is a binary matrix, users may
select among logistic loss, hinge loss, and squared hinge loss to perform BMF. Note that,
the non-negative constraints, P ∈ Rk×m

+ and Q ∈ Rk×n
+ , can be activated for (1). With the

general setting in (1), currently LIBMF can solve more problems than its previous versions.
The newly covered problems include, for example, NMF with generalized KL-divergence
(Lee and Seung, 2001), sparse NMF (Lee et al., 2007), logistic NMF (Tomé et al., 2015),
and maximum-margin MF (Srebro et al., 2005).

A special case of BMF is one-class matrix factorization (OCMF) in which the training
matrix is still binary but contains only positive entries. OCMF is worthy to be considered
as in some online activities (e.g., Pan et al., 2008) only positive feedbacks (i.e., purchase or
click) from users can be monitored. The OCMF model in LIBMF is Bayesian personalized
ranking (BPR) proposed by Rendle et al. (2009).

Refer to the supplementary materials for details of RVMF, BMF, and OCMF.

2.2 Practical Usage

In a sub-directory demo, we prepare three data sets for helping users to understand the data
format and demonstrating RVMF, BMF, and OCMF. Each data set has training and test
files, of which each line is a 3-tuple of row index, column index, and the value. For RVMF,
the value is a real number. For BMF, any value grater than zero would be treated as a
positive label and a negative label otherwise. For OCMF, the training file should contain
only positive entries. A shell script demo.sh contains the training and prediction commands
for different types of MF problems. For example, we may use the following command to
perform RVMF on train file and save the result to a model file model.
$ ./mf-train train file model

The model file contains two parts: the columns of P ∈ Rk×m and then the columns of

3



Time (sec.)
0 2 4 6

R
M

S
E

0.84

0.86

0.88

0.9

0.92

0.94 NOMAD
LIBPMF
LIBMF

(a) MovieLens

Time (sec.)
0 10 20 30 40 50

R
M

S
E

0.92

0.94

0.96

0.98

1
NOMAD
LIBPMF
LIBMF

(b) Netflix

Time (sec.)
0 50 100 150 200

R
M

S
E

22

23

24

25
NOMAD
LIBPMF
LIBMF

(c) Yahoo!Music

Figure 1: Comparisons with state of the art packages. The figure is generated from the
results in Chin et al. (2015b). The platform for the experiments is a Linux server with two
Intel Xeon 2620 CPUs and 64GB memory. Twelve threads are used for all packages.

Q ∈ Rk×n. To evaluate the model on a test set, users may run
$ ./mf-predict test file model out

The file out contains predictions of the entries specified in test file, and the default
evaluation measure, root mean square error (RMSE), is printed. Users can also choose
absolute error, generalized KL-divergence, logarithmic loss, accuracy, mean percentile rank,
or area under the curve.

2.3 Documentation

The script demo.sh mentioned in Section 2.2 is a quick start guide. The README file
covers information including an installation guide, a C/C++ API guide, and examples of
command line usages. Users can refer to Chin et al. (2015b) to see how we select parameters
for some representative data sets. The two files mf-train.cpp and mf-predict.cpp for the
training and prediction commands, respectively, are good examples demonstrating the use
of API functions. For the parallel stochastic gradient methods used in LIBMF, details are
in Chin et al. (2015a), Chin et al. (2015b), and the supplementary material.

3. Comparisons

We compare LIBMF with state of the art packages, LIBPMF (Yu et al., 2012) and NOMAD
(Yun et al., 2014), for parallel matrix factorization using a squared loss and L2-regularization.
Results in Figure 1 indicate that LIBMF is efficient.

4. Conclusions

We develop LIBMF for fully utilizing the computational power of modern multi-core ma-
chines to solve several MF problems. The newly added features listed below make LIBMF
significantly improved in compared with its previous versions.

1. More loss functions are supported for RVMF.
2. The framework is extended to cover BMF, OCMF, and L1 regularization.
3. For different type of MF problems, we implement suitable evaluation criteria such as

mean percentile rank and area under the curve.
4. LIBMF can use disk to cache the training matrix, so the capability to handle huge matrices

is largely enhanced.

4



References

Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel stochastic
gradient method for matrix factorization in shared memory systems. ACM Transactions
on Intelligent Systems and Technology, 6:2:1–2:24, 2015a. URL http://www.csie.ntu.

edu.tw/~cjlin/papers/libmf/libmf_journal.pdf.

Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and Chih-Jen Lin. A learning-rate schedule
for stochastic gradient methods to matrix factorization. In Proceedings of the Pacific-
Asia Conference on Knowledge Discovery and Data Mining (PAKDD), 2015b. URL
http://www.csie.ntu.edu.tw/~cjlin/papers/libmf/mf_adaptive_pakdd.pdf.

Abhinandan Das, Mayur Datar, Shyam Rajaram, and Ashutosh Garg. Google news person-
alization: scalable online collaborative filtering. In Proceedings of the 16th international
conference on World Wide Web, pages 271–280, 2007.

Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques for
recommender systems. Computer, 42:30–37, 2009.

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix factorization.
In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 556–562. MIT Press, 2001.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Y. Ng. Efficient sparse coding
algorithms. In Advances in Neural Information Processing Systems, pages 801–808. 2007.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz, and
Qiang Yang. One-class collaborative filtering. In IEEE International Conference on Data
Mining (ICDM), pages 502–511, 2008.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. BPR:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence (UAI), pages 452–461, 2009.

Nathan Srebro, Jason D. M. Rennie, and Tommi S. Jaakola. Maximum-margin matrix
factorization. In Advances in Neural Information Processing Systems, pages 1329–1336,
2005.

Ana Maria Tomé, Reinhard Schachtner, Vincent Vigneron, Carlos Garcia Puntonet, and
Elmar Wolfgang Lang. A logistic non-negative matrix factorization approach to binary
data sets. Multidimensional Systems and Signal Processing, 26(1):125–143, 2015.

Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S. Dhillon. Scalable coordinate descent
approaches to parallel matrix factorization for recommender systems. In Proceedings of
the IEEE International Conference on Data Mining, pages 765–774, 2012.

Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S.V.N. Vishwanathan, and Inderjit S. Dhillon.
Nomad: Non-locking, stochastic multi-machine algorithm for asynchronous and decentral-
ized matrix completion. In International Conference on Very Large Data Bases (VLDB),
2014.

5


