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Matrix factorization is known to be an effective method for recommender systems that are given only

the ratings from users to items. Currently, stochastic gradient (SG) method is one of the most popular
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1. INTRODUCTION

Many customers are overwhelmed with the choices of products in the e-commerce activities.
For example, Yahoo!Music and GrooveShark provide a huge number of songs for on-line
audiences. An important problem is how to let users efficiently find items meeting their
needs. Recommender systems have been constructed for such a purpose. As demonstrated
in KDD Cup 2011 [Dror et al. 2012] and Netflix competition [Bell and Koren 2007], a
collaborative filter using latent factors has been considered as one of the best models for
recommender systems. This approach maps both users and items into a latent feature
space. A latent factor, though not directly measurable, often contains some useful abstract
information. The affinity between a user and an item is defined by the inner product of
their latent-factor vectors. More specifically, given m users, n items, and a rating matrix R
that encodes the preference of the uth user on the vth item at the (u,v) entry, ru,v, matrix
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factorization [Koren et al. 2009] is a technique to find two dense factor matrices P ∈ Rk×m

and Q ∈ Rk×n such that ru,v ' pT
uqv, where k is the pre-specified number of latent factors,

and pu ∈ Rk and qv ∈ Rk are respectively the uth column of P and the vth column of Q.
The optimization problem is

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

uqv)2 + λP ‖pu‖
2

+ λQ ‖qv‖
2)

, (1)

where ‖·‖ is the Euclidean norm, (u, v) ∈ R indicates that rating ru,v is available, λP and λQ

are regularization coefficients for avoiding over-fitting.1 Because
∑

(u,v)∈R
(
ru,v − pT

uqv

)2
is

a non-convex function of P and Q, (1) is a difficult optimization problem. Many past studies
have proposed optimization methods to solve (1), e.g., [Koren et al. 2009; Zhou et al. 2008;
Pilászy et al. 2010]. Among them, stochastic gradient (SG) is popularly used. For example,
all of the top three teams in KDD Cup 2011 (track 1) employed SG in their winning
approaches.

The basic idea of SG is that, instead of expensively calculating the gradient of (1), it ran-
domly selects a (u,v) entry from the summation and calculates the corresponding gradient
[Robbins and Monro 1951; Kiefer and Wolfowitz 1952]. Once ru,v is chosen, the objective
function in (1) is reduced to(

ru,v − pT
uqv

)2
+ λPp

T
upu + λQq

T
v qv.

After calculating the sub-gradient over pu and qv, variables are updated by the following
rules

pu ← pu + γ (eu,vqv − λPpu) , (2)

qv ← qv + γ (eu,vpu − λQqv) , (3)

where

eu,v = ru,v − pT
uqv

is the error between the real and predicted ratings for the (u,v) entry, and γ is the learning
rate. The overall procedure of SG is to iteratively select an instance ru,v , apply update
rules (2)-(3), and may adjust the learning rate.

Although SG has been successfully applied to matrix factorization, it is not applicable to
handle large-scale data. The iterative process of applying (2)-(3) is inherently sequential, so
it is difficult to parallelize SG under advanced architectures such as GPU, multi-core CPU
or distributed clusters. Several parallel SG approaches have been proposed (e.g., [Zinkevich
et al. 2010; McDonald et al. 2010; Mann et al. 2009; Hall et al. 2010; Gemulla et al. 2011;
Niu et al. 2011]), although their focuses may be on other machine learning techniques
rather than matrix factorization. In this work, we aim at developing an effective parallel
SG method for matrix factorization in a shared memory environment. Although for huge
data a distributed system must be used, in many situations running SG on a data set that
can fit in memory is still very time consuming. For example, the size of the KDD Cup 2011
data is less than 4GB and can be easily stored in the memory of one computer, but a single
SG iteration of implementing (2)-(3) takes more than 30 seconds. The overall SG procedure
may take hours. Therefore, an efficient parallel SG to fully take the power of multi-core
CPU can be very useful in practice.

1The regularization terms can be rewritten in an alternative form,
∑

u,v λP ‖pu‖
2 = λP

∑m
u=1 |Ωu| ‖pu‖

2

and
∑

u,v λQ ‖qv‖
2 = λQ

∑n
v=1 |Ω̄v | ‖qv‖

2, where |Ωu| and |Ω̄v | indicate the number of non-zero ratings

associated with the uth user and the vth item, respectively.
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Among existing parallel-SG methods for matrix factorization, some are directly designed
or can be adapted for shared-memory systems. We briefly discuss two state-of-the-art meth-
ods because our method will improve upon them. HogWild [Niu et al. 2011] randomly selects
a subset of ru,v instances and apply rules (2)-(3) in all available threads simultaneously with-
out synchronization between threads. The reason why they can drop the synchronization
is that their algorithm guarantees the convergence when factorizing a highly sparse matrix
with the rare existence of the over-writing problem where different threads access the same
data or variables such as ru,v, pu and qv at the same time. That is, one thread is allowed to
over-write another’s work. DSGD [Gemulla et al. 2011] is another popular parallel SG ap-
proach although it is mainly designed for cluster environments. Given s computation nodes
and a rating matrix R, DSGD uniformly grids R into s by s blocks first. Then DSGD assigns
s different blocks to the s nodes. On each node, DSGD performs (2)-(3) on all ratings of the
block in a random order. As expected, DSGD can be adapted for shared-memory systems
if we replace a computational node with a thread.

In this paper, we point out that existing parallel SG methods may suffer from the following
issues when they are applied in a shared-memory system.
— Data discontinuity: the algorithm may randomly access data or variables so that a high

cache-miss rate is endured.
— Block imbalance: for approaches that split data to blocks and utilize them in parallel,

cores/CPUs for sparser blocks (i.e., a block contains fewer ratings) must wait for those
assigned to denser blocks.

Our main contribution is to design an effective method to alleviate these issues. This paper
is organized as follows. We give details of HogWild and DSGD in Section 2. Another parallel
matrix factorization method CCD++ is also discussed in this section. Then Section 3 dis-
cusses difficulties in parallelizing SG for matrix factorization. Our proposed method FPSG
(Fast Parallel SG) is introduced in Section 4. We compare our method with state-of-the-art
algorithms using root mean square error (RMSE) as the evaluation measure in Section 5.
RMSE is defined as √√√√ 1

number of ratings

∑
(u,v)∈R

(ru,v − r̂u,v)2, (4)

where R is the rating matrix of the test set and r̂u,v is the predicted rating value. In Section
6, we discuss some miscellaneous issues related to our proposed approach. Finally, Section
7 summarizes our work and gives future directions.

A preliminary version of this work appears in a conference paper [Zhuang et al. 2013].
The major extensions in this journal version include first we add more experiments to show
the effectiveness of FPSG, second we compare the speedup of state-of-the-art methods, and
third many detailed descriptions are now given.

2. EXISTING PARALLELIZED STOCHASTIC GRADIENT DESCENT ALGORITHMS AND
COORDINATE DESCENT METHODS

Following the discussion in Section 1, in this section, we present two parallel SG methods,
HogWild [Niu et al. 2011] and DSGD [Gemulla et al. 2011], in detail. We also discuss a
non-SG method CCD++ [Yu et al. 2012] because it is included for comparison in Section
5. CCD++ is a parallel coordinate descent method that is considered state-of-the-art for
matrix factorization.

2.1. HogWild

HogWild [Niu et al. 2011] assumes that the rating matrix is highly sparse and deduces
that for two randomly sampled ratings, the two serial updates via (2)-(3) are likely to be
independent. The reason is that the selected ratings to be updated almost never share
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Algorithm 1 HogWild’s Algorithm

Require: number of threads s, R ∈ Rm×n, P ∈ Rk×m, and Q ∈ Rk×n

1: for each thread i parallelly do
2: while true do
3: randomly select an instance ru,v from R
4: update corresponding pu and qv using (2)-(3), respectively
5: end while
6: end for

Fig. 1: An example shows updating sequences of two threads in HogWild.

the same user identity and item identity. Then, iterations of SG, (2)-(3), can be parallely
executed in different threads. With the assumption of independent updates, HogWild does
not synchronize the state of each thread for preventing concurrent variable access. Instead,
HogWild employs atomic operations, each of which is a series of CPU instructions that
can not be interrupted. Therefore, as a kind of asynchronous methods, HogWild saves the
time for synchronization. Although the potential over-writing may occur (i.e., the ratings
to be updated share the same user identity or item identity), Niu et al. [2011] prove the
convergence under some assumptions such as the rating matrix is very sparse.

Algorithm 1 shows the whole process of HogWild. We use Figure 1 to illustrate how
two threads run SG updates simultaneously. The left matrix and the right matrix are
the updating sequences of two threads, where black dots are ratings randomly selected
by a thread and arrows indicate the order of processed ratings. The red dot, which is
simultaneously accessed by two threads in their last iterations in Figure 1, indicates the
occurrence of the over-writing problem. That is, two threads conduct SG updates using the
same rating value ri,j . From Algorithm 1, the operations include
— reading ri,j , pi and qj ,
— evaluating the right-hand sides of (2)-(3), and
— assigning values to the left-hand sides of (2)-(3)
The second operation does not change shared variables because it is a series of arithmetic
operations on local variables ri,j , pi and qj . However, for the first and the last operations,
we use atomic instructions that are executed without considering the situation of other
threads. All available threads would continuously execute the above-mentioned procedure
until achieving the user-defined number of iterations.

2.2. DSGD

Although SG is a sequential process, DSGD [Gemulla et al. 2011] takes the property that
some blocks of the rating matrix are mutually independent and their corresponding variables
can be updated in parallel. DSGD uniformly grids the rating matrix R into many sub-
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Algorithm 2 DSGD’s Algorithm

Require: number of threads s, maximum iterations T , R ∈ Rm×n, P ∈ Rk×m, and Q ∈
Rk×n

1: grid R into s× s blocks B and generate s patterns covering all blocks
2: for t = {1, . . . , T} do
3: Decide the order of s patterns sequentially or by random permutation
4: for each pattern of s independent blocks of B do
5: assign s selected blocks to s threads
6: for b = {1, . . . , s} parallellly do
7: randomly sample ratings from block b
8: apply (2)-(3) on all sampled ratings
9: end for

10: end for
11: end for

matrices (also called blocks), and applies SG to some independent blocks simultaneously.
In the following discussion, we say two blocks are independent to each other if they share
neither any common column nor any common row of the rating matrix. For example, in
Figure 2, the six patterns of gray blocks in R cover all possible patterns of independent
blocks. Note that Gemulla et al. [2011] restrict the number of blocks in each patten to be
s, the number of available computational nodes, for reducing the data communication in
distributed systems; see also the explanation below.

The overall algorithm of DSGD is shown in Algorithm 2, where T is the maximal number
of iterations. In line 2, R is grided into s × s uniform blocks, and the intermediate for-
loop continuously assigns s independent blocks to computation nodes until all blocks in R
have been processed once. The bth iteration of the innermost for-loop updates P and Q by
performing SG on ratings in the block b. Given a 4-by-4 divided rating matrix and 4 threads
as an example in Figure 3a, we show two consecutive iterations of the innermost for-loop
in Figure 3b. The left iteration assigns 4 diagonal blocks to 4 nodes (i0, i1, i2, i3); node i0
updates p0 and q0, node i1 updates p1 and q1, and so on. In the next (right) iteration, each
node updates the same segment of P , but for Q, q1, q2, q3 and q0 are respectively updated
by nodes i0, i1, i2 and i3. This example shows that we can keep pk in node ik to avoid
the communication of P . However, nodes must exchange their segments of Q, which are
alternatively updated by different nodes in different iterations. For example, from Figure
3a to Figure 3b, node i0 must send node i3 the segment q0 after finishing its computation.
Consequently, the total amount of data transferred in one iteration of the intermediate loop
is the size of Q because each of s nodes sends |Q|/s and receives |Q|/s entries of Q from
another node, where |Q| is the total number of entries in Q.

2.3. CCD++

CCD++ [Yu et al. 2012] is a parallel method for matrix factorization in both shared-memory
and distributed environments. Based on the concept of a coordinate descent method,
CCD++ sequentially updates one row of P and one row of Q corresponding to the same
latent dimension while fixing other variables. Let

p̂1, . . . , p̂k be P ’s rows and

q̂1, . . . , q̂k be Q’s rows.

CCD++ cyclically updates (p̂1, q̂1) until (p̂k, q̂k). Let (p̂, q̂) be the current values of the
selected row and denote (w,h) as the corresponding variables to be determined. Because
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Fig. 2: Patterns of independent blocks for a 3 by 3 grided matrix.
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(a) 4 by 4 grided rating matrix R and corresponding segments of P and Q. Note that pi is the ith
segment of P and qj is the jth segment of Q.
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(b) An example of two consecutive iterations (the left is before the right) of the innermost for-loop
of Algorithm 2. Each iteration considers a set of 4 independent blocks.

Fig. 3: An illustration of the DSGD algorithm.

other rows are fixed, the objective function in (1) can be converted to∑
(u,v)∈R

(
ru,v − pT

uqv + p̂uq̂v − wuhv
)2

+ λP

(
m∑

u=1

‖pu‖2 −
m∑

u=1

p̂2u +

m∑
u=1

w2
u

)

+ λQ

(
n∑

v=1

‖qv‖2 −
n∑

v=1

q̂2v +

n∑
v=1

h2v

) (5)
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Algorithm 3 CCD++’s Algorithm

Require: maximum outer iterations T , R ∈ Rm×n, P ∈ Rk×m, and Q ∈ Rk×n

1: Initialize P as a zero matrix
2: Calculate rating error eu,v = ru,v for all (u, v) ∈ R
3: for t = {1, . . . , T} do
4: for tk = {1, . . . , k} do
5: Let p̂ and q̂ be the tkth row of P and Q, respectively.
6: for u = {1, . . . ,m} parallely do
7: Solve (8) under the given u, and then update p̂u and eu,v, ∀v with (u, v) ∈ R
8: end for
9: for v = {1, . . . , n} parallely do

10: Solve (9) under the given v, and then update q̂v and eu,v, ∀u with (u, v) ∈ R
11: end for
12: Copy p̂ and q̂ back to the tkth row of P and Q, respectively.
13: end for
14: end for

or ∑
(u,v)∈R

(eu,v + p̂uq̂v − wuhv)2 + λP

m∑
u=1

w2
u + λQ

n∑
v=1

h2v (6)

by dropping terms that do not depend on w or h. If w (or h) is fixed, the minimization of
(6) becomes a least square problem. Yu et al. [2012] alternatively update w and h several
times (called inner iterations in CCD++). In the case where h is fixed as the current q̂, (6)
becomes

m∑
u=1

 ∑
v: (u,v)∈R

(eu,v + p̂uq̂v − wuq̂v)2 + λPw
2
u

+ constant. (7)

It can be decomposed into m independent problems

min
wu

∑
v: (u,v)∈R

(eu,v + p̂uq̂v − wuq̂v)2 + λPw
2
u, ∀u = 1, . . . ,m. (8)

Each involves a quadratic function of a single variable, so a closed-form solution exists.
Then for any u, eu,v can be updated by

eu,v ← eu,v + (p̂u − wu)q̂v, ∀v with (u, v) ∈ R.
Similarly, by fixing w, we solve the following n independent problems to find h for updating
q̂.

min
hv

∑
u: (u,v)∈R

(eu,v + p̂uq̂v − p̂uhv)2 + λQh
2
v, ∀v = 1, . . . , n. (9)

The parallelism of CCD++ is achieved by solving those independent problems in (8) and
(9) simultaneously. See Algorithm 3 for the whole procedure of CCD++.

3. PROBLEMS IN PARALLEL SG METHODS FOR MATRIX FACTORIZATION

In this section, we point out that parallel SG methods discussed in Section 2 may suffer
some problems when they are applied in a shared-memory environment. These problems
are locking problem and memory discontinuity. We introduce what these problems are, and
explain how they result in performance degradation.
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2

1

0

0 1 2

Fig. 4: An example of the locking problem in DSGD. Each dot represents a rating; gray
blocks indicate a set of independent blocks. Ratings in white blocks are not shown.

3.1. Locking Problem

For a parallel algorithm, to maximize the performance, keeping all threads busy is impor-
tant. The locking problem occurs if a thread idles because of waiting for other threads. In
DSGD, if s threads are used, then according to Algorithm 2, s independent blocks are up-
dated in a batch. However, if the running time for each block varies, then a thread that
finishes its job earlier may need to wait for other threads.

The locking problem may be more serious if R is unbalanced. That is, available ratings
are not uniformly distributed across all positions in R. In such a case, the thread updating
a block with fewer ratings may need to wait for other threads. For example, in Figure 4,
after all ratings in block b1,1 have been processed, only one third of ratings in block b0,0
have been handled. Hence the thread updating b1,1 idles most of the time.

A simple method to make R more balanced is random shuffling, which randomly permutes
user identities and item identities before processing. However, the amount of ratings in each
block may still not be exactly the same. Further, even if each block contains the same amount
of ratings, the computing time of each code can still be slightly different. Therefore, other
techniques are needed to address the locking problem.

Interestingly, DSGD has a reason to ensure that s blocks are processed before moving to
the next s. As mentioned in Section 2.2, it is designed for distributed systems, so minimizing
the communication cost between computing nodes may be more important than reducing
the idle time of nodes. However, in shared memory systems the locking problem becomes
an important issue.

3.2. Memory Discontinuity

When a program accesses data in memory discontinuously, it suffers from a high cache-
miss rate and performance degradation. Most SG solvers for matrix factorization including
HogWild and DSGD randomly pick instances from R (or from a block of R) to be updated.
We call this setting as the random method, which is illustrated in Figure 5. Though the
random method generally enjoys good convergence, it suffers from the memory discontinuity
seriously. The reason is that not only are rating instances randomly accessed, but also
user/item identities become discontinuous.

The seriousness of the memory discontinuity varies in different methods. In HogWild,
each thread randomly picks instances among R independently, so it suffers from memory
discontinuity in R, P , and Q. In contrast, for DSGD, though ratings in a block are randomly
selected, as we will see in Section 4.2, we can easily change the update order to mitigate
the memory discontinuity.
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R

=

PT Q

Fig. 5: A random method to select rating instances for update.

4. OUR APPROACHES

In this paper, we propose two techniques, lock-free scheduling and partial random method,
to respectively solve the locking problem mentioned in Section 3.1 and the memory discon-
tinuity mentioned in Section 3.2. We name the new parallel SG method as fast parallel SG
(FPSG). In Section 4.1, we discuss how FPSG flexibly assigns blocks to threads to avoid
the locking problem. In Section 4.2, we observe that a comprehensive random selection may
not be necessary, and show that randomization can be applied only among blocks instead of
within blocks to maintain both the memory continuity and the fast convergence. In Section
4.3, we overview the complete design of FPSG. Finally, in Section 4.4, we introduce our
implementation techniques to accelerate the computation.

4.1. Lock-Free Scheduling

We follow DSGD to grid R into blocks and design a scheduler to keep s threads busy in
running a set of independent blocks. For a block bi,j , if it is independent from all blocks
being processed, then we call it as a free block. Otherwise, it is a non-free block. When a
thread finishes processing a block, the scheduler assigns a new block that meets the following
two criteria:
(1) It is a free block.
(2) Its number of past updates is the smallest among all free blocks.

The number of updates of a block indicates how many times it has been processed. The
second criterion is applied because we want to keep a similar number of updates for each
block. If two or more blocks meet the above two criteria, then we randomly select one. Given
s threads, we show that FPSG should grid R into at least (s + 1) × (s + 1) blocks. Take
two threads as an example. Let T1 be a thread that is updating certain block and T2 be a
thread that just finished updating a block and is getting a new job from the scheduler. If
we grid R into 2 × 2 blocks shown in Figure 6a, then T2 has only one choice: the block it
just processed. A similar situation happens when T1 gets its new job. Because T1 and T2

always process the same block, the remaining two blocks are never processed. In contrast,
if we grid R into 3 × 3 blocks like Figure 6b, T2 has three choices b1,1, b1,2 and b2,1 when
getting a new block.

As discussed above, because we can always assign a free block to a thread when it finishes
updating the previous one, our scheduler does not suffer from the locking problem. However,
for extremely unbalanced data sets, where most available ratings are in certain blocks, our
scheduler is unable to keep the number of updates in all blocks balanced. In such a case
blocks with many ratings are updated only very few times. A simple remedy is the random
shuffling technique introduced in Section 3.1. In our experience, after random shuffling, the
number of ratings in the heaviest block is smaller than twice of the lightest block. We then
experimentally check how serious the imbalance problem is after random shuffling. Here we
define degree of imbalance (DoI) to check the number of updates in all blocks. Let UTM (t)
and UTm(t) be the maximal and the minimal numbers of updates in all blocks, respectively,
where t is the iteration index. (FPSG does not have the concept of iterations. Here we call
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(b) 3 × 3 blocks

Fig. 6: An illustration of how the split of R to blocks affects the job scheduling. T1 is the
thread that is updating block b0,0. T2 is the thread that is getting a new block from the
scheduler. Blocks with “x” are dependent on block b0,0, so they cannot be updated by T2.
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Fig. 7: DoI on four data sets. R is grided into 13× 13 blocks after being randomly shuffled
and 12 threads are used.

every cycle of processing (s+ 1)2 blocks as an iteration.) DoI is defined as

DoI =
UTM (t)−UTm(t)

t
.

A small DoI indicates that the number of updates is similar across all blocks. In Figure 7,
we show DoI for four different data sets. We can see that our scheduler reduces DoI to be
close to zero in just a few iterations. For details of the data sets used in Figure 7, please
refer to Section 5.1.
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Fig. 8: Ordered method to select rating instances for update.

4.2. Partial Random Method

To achieve memory continuity, in contrast to the random method, we can consider an
ordered method to sequentially select rating instances by user identities or item identities.
Figure 8 gives an example of following the order of users. Then matrix P can be accessed
continuously. Alternatively, if we follow the order of items, then the continuous access of
Q can be achieved. For R, if the order of selecting rating instances is fixed, we can store
R into memory with the same order to ensure its continuous access. Although the ordered
method can access data in a more continuous manner, empirically we find that it is not
stable. Figure 9 gives an example showing that under two slightly different learning rates
for SG, the ordered method can be either much faster or much slower than the random
method.

The above experiment indicates that a random access of data/variables may be useful for
the convergence. This property has been observed in related optimization techniques. For
example, in coordinate descent methods to solve some optimization problems, Chang et al.
[2008] show that a random rather than a sequential order to update variables significantly
improves the convergence speed. To compromise between data continuity and convergence
speed, in FPSG, we propose a partial random method, which selects ratings in a block orderly
but randomizes the selection of blocks. Although our scheduling is close to deterministic
by choosing blocks with the smallest numbers of accesses, the randomness can be enhanced
by griding R into more blocks. Then at any time point, some blocks have been processed
by the same number of times, so the scheduler can randomly select one of them. Figure 10
illustrates how the partial random method works using three threads. Figure 11 extends
the running time comparison in Figure 9 to include FPSG. We can see that FPSG enjoys
both fast convergence and excellent RMSE. Some related methods have been investigated
in [Gemulla et al. 2011], although they showed that the convergence on the ordered method
in terms of training loss is worse than the random method. Their observation is opposite
to our experimental results. A possible reason is that we consider RMSE on the testing set
while they consider the training loss.

Some subtle implementation details must be noted. We discussed in Section 4.1 that
FPSG applies random shuffling to avoid the unbalanced number of updates of each block.
However, after applying the random shuffling and griding R in to blocks, the ratings in each
block are not sorted by user (or item) identities. To apply the partial random method we
must sort user identities before processing each block because an ordered method is applied
within the block. We give an illustration in Figure 12. In the beginning, we make the rating
matrix more balanced by randomly shuffling all ratings; see the middle figure in Figure
12. However, user identities and item identities become not ordered, so we cannot achieve
memory continuity by using the update strategy shown in Figure 8. Therefore, we must
rearrange ratings in each block so that their row indices (i.e., user identities) are ordered;
see the last figure in Figure 12.
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Fig. 9: A comparison between the random method and the ordered method using the Ya-
hoo!Music data set. One thread is used.

Fig. 10: An illustration of the partial random method. Each color indicates the block being
processed by a thread. Within each block, the update sequence is ordered like that in Figure
8. If block (1,1) is finished first, three candidates independent of the two other running blocks
(2,2) and (3,3) are (1,4), (4,1), and (4,4), which are indicated by red arrows. If these three
candidates have been accessed by the same number of times, then one is randomly chosen.
This example explains how we achieve the random order of blocks.

4.3. Overview of FPSG

Algorithm 4 gives the overall procedure of FPSG. Based on the discussion in Section 4.1,
FPSG first randomly shuffles R to avoid data imbalance. Then it grids R into at least
(s+ 1)× (s+ 1) blocks and applies the partial random method discussed in Section 4.2 by
sorting each block by user (or item) identities. Finally it constructs a scheduler and launches
s working threads. After the required number of iterations is reached, it notifies the scheduler
to stop all working threads. The pseudo code of the scheduler and each working thread are
shown in Algorithm 5 and Algorithm 6, respectively. Each working thread continuously
gets a block from the scheduler by invoking get job, and the scheduler returns a block
that meets criteria mentioned in Section 4.1. After a working thread gets a new block, it
processes ratings in the block in an ordered manner (see Section 4.2). In the end, the thread
invokes put job of the scheduler to update the number of times that the block has been
processed.
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Fig. 11: A comparison between the ordered method, the random method, and the partial
random method on the set Yahoo!Music. One thread is used.
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Fig. 12: An illustration of the partial random method. After the random shuffle of data,
some indices (in red color) are not ordered within each block. We make the row indices
ordered (in blue color) by a sorting procedure.

Algorithm 4 The overall procedure of FPSG

1: randomly shuffle R
2: grid R into a set B with at least (s+ 1)× (s+ 1) blocks
3: sort each block by user (or item) identities
4: construct a scheduler
5: launch s working threads
6: wait until the total number of updates reaches a user-defined value

4.4. Implementation Issues

FPSG uses the standard thread class in C++ implemented by pthread to do the paral-
lelization. For the data set Yahoo!Music of about 250M ratings, using a typical machine
(details specified in Section 5.1), FPSG finishes processing all ratings once in 6 seconds and
takes only about 8 minutes to converge to a reasonable RMSE. Here we describe some tech-
niques employed in our implementation. First, empirically we find that using single-precision
floating-point computation does not suffer from numerical error accumulation. For the data
set Netflix, using single precision runs 1.1 times faster then using double precision. Second,
modern CPU provides SSE instructions that can concurrently run floating-point multipli-
cations and additions. We apply SSE instructions for vector inner products and additions.
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Algorithm 5 Scheduler of FPSG

1: procedure get job
2: Randomly select a block b from the free blocks that have the smallest number of

updates
3: return b
4: end procedure
5: procedure put job(b)
6: increase b’s update times by one
7: end procedure

Algorithm 6 Working thread of FPSG

1: while true do
2: get a block b from scheduler → get job()
3: process elements orderly in this block
4: scheduler → put job(b)
5: end while
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Fig. 13: A comparison between two implementations of FPSG in Netflix and Yahoo!Music.
FPSG implements the two techniques discussed in Section 4.4, while FPSG* does not.

For Yahoo!Music data set, the speed up is 2.4 times. Figure 13 shows the speedup after
these techniques are applied in two data sets.2

Now we discuss the implementation of the scheduler. A naive way is to first identify
all blocks having the smallest number of updates, and then randomly select one. This
implementation must go through all blocks, so for a fine grid of the rating matrix, the
running time can be large. Therefore, we should store and maintain block information in a
structure so that blocks having the smallest number of updates can be quickly extracted.
An example is the priority queue according to blocks’ numbers of updates. However, two
issues must be addressed. First, a non-free block cannot be selected. Second, when two or
more free blocks simultaneously have the smallest number of updates, we must randomly
select one. To solve the first problem, we keep popping non-free blocks from the priority
queue to a list until a free block is obtained. Then we push these non-free blocks back into
the priority queue, and then return the free block. Note that the number of popped blocks
is no more than s, the number of threads, so we avoid going through the O(s2) number of
all blocks. For the second problem, a trick can be employed. Instead of using the number

2For experimental settings, see Section 5.1.
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Algorithm 7 An implementation of the scheduler using priority queue

1: procedure get job
2: Create an empty list NFBS to store non-free blocks
3: while true do
4: b = pq.pop() . pq: the priority queue
5: if b is non-free then
6: Append b to NFBS
7: else
8: Push all blocks in NFBS back to pq
9: return b

10: end if
11: end while
12: end procedure
13: procedure put job(b)
14: b.ut = b.ut + 1 . ut: number of updates
15: b.utj = b.ut + rand()
16: pq.push(b) . pq uses utj as the priority
17: end procedure

of updates as the “priority” of the queue, we consider

#updates + a value ∈ [0.0, 1.0).

This trick makes blocks with the same number of updates have “local” random priorities,
but does not influence the relative priority between blocks with different number of updates.
The pseudo code is given in Algorithm 7.

5. EXPERIMENTS

In this section, we provide the details about our experimental settings, and compare FPSG
with other parallel matrix factorization algorithms mentioned in Section 2.

5.1. Settings

Data Sets: Four data sets, MovieLens,3 Netflix, Yahoo!Music, and Hugewiki,4 are used
for the experiments. For reproducibility, we consider the original training/test sets in our
experiments if they are available (for MovieLens, we use Part B of the original data set
generated by the official script). Because the test set of Yahoo!Music is not available, we
consider the last four ratings of each user for testing, while the remaining ratings for training
set. The data set Hugewiki is too large to fit in our machines, so we sample one quarter of
the data randomly, and split them into training/test sets. The statistics of each data set is
in Table I.
Platform: We use a server with two Intel Xeon E5-2620 2.0GHz processors and 64 GB

memory. There are six cores in each processor.
Parameters: Table I lists the parameters used for each data set. The parameters k,

λP , λQ may be chosen by a validation procedure although here we mainly borrow values
from earlier works to obtain comparable results. For Netflix and Yahoo!Music, we use the
parameters in [Yu et al. 2012]; see values listed in Table I. Although [Yu et al. 2012] have
considered MovieLens, we use a different setting of λP = λQ = 0.05 for a better RMSE.
For Hugewiki, we consider the same parameters as in [Yun et al. 2014]. The initial values
of P and Q are chosen randomly under a uniform distribution. This setting is the same as

3http://www.grouplens.org/node/73
4http://graphlab.org/downloads/datasets/
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Data Set MovieLens Netflix Yahoo!Music Hugewiki
m 71,567 2,649,429 1,000,990 39,706
n 65,133 17,770 624,961 25,034,863

#Training 9,301,274 99,072,112 252,800,275 761,429,411
#Test 698,780 1,408,395 4,003,960 100,000,000

k 40 40 100 100
λP 0.05 0.05 1 0.01
λQ 0.05 0.05 1 0.01
γ 0.003 0.002 0.0001 0.004

Table I: The statistics and parameters for each data set. Note that the Hugewiki set used
here contains only one quarter of the original set.

that in [Yu et al. 2012]. The learning rate is determined by an ad hoc parameter selection.
Because we focus on the running speed rather than RMSE in this paper, we do not apply
an adaptive learning rate.

In our platform, 12 physical cores are available, so we use 12 threads in all experiments.
For FPSG, even though Section 4 shows that (s+ 1)× (s+ 1) blocks are already enough for
s threads, we use more blocks to ensure the randomness of blocks that are simultaneously
processed. For Netflix, Yahoo!Music and Hugewiki, R is grided into 32 × 32 blocks; for
MovieLens, R is grided into 16× 16 blocks because the number of non-zeros is smaller.
Evaluation: As most recommender systems do, the metric adopted as our evaluation is

RMSE on the test set, which is disjoint with the training set; see Eq. (4). In addition, the
time in each figure refers to the training time.
Implementations: Among methods included for comparison, HogWild5 and CCD++6

are publicly available. We reimplement HogWild under the same framework of our FPSG
and DSGD implementations for a fairer comparison. In the official HogWild package, the
formulation includes the average value of training ratings. After trying different settings,
the program still fails to converge. Therefore, we present only results of our HogWild im-
plementation in the experiments.

The publicly available CCD++ code uses double precision. Because ours uses single pre-
cision following the discussion in Section 4.4, for a fair comparison, we obtain a singles-
precision version of CCD++ from its authors. Note that OpenMP7 is used in their imple-
mentation.

5.2. Comparison of Methods on Training Time versus RMSE

We first illustrate the effectiveness of our solutions for data imbalance and memory disconti-
nuity. Then, we compare parallel matrix factorization methods including DSGD, CCD++,
HogWild and our FPSG.

5.2.1. The effectiveness of addressing the locking problem. In Section 3.1, we mentioned that
updating several blocks in a batch may suffer from the locking problem if the data is unbal-
anced. To verify the effectiveness of FPSG, in Figure 14, we compare it with a modification
where the scheduler processes a batch of independent blocks as DSGD (Algorithm 2) does.
We call the modified algorithm as FPSG**. It can be clearly seen that FPSG runs much
faster than FPSG** because it does not suffer from the locking problem.

5.2.2. The effectiveness of having better memory locality. We conduct experiments to investigate
if the proposed partial random method can not only avoid memory discontinuity, but also

5http://hazy.cs.wisc.edu/hazy/victor/
6http://www.cs.utexas.edu/∼rofuyu/libpmf/
7http://openmp.org/
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Fig. 14: A comparison between FPSG** and FPSG.
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Fig. 15: A comparison between the partial random method and the random method.
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Fig. 16: A comparison among the state-of-the-art parallel matrix factorization methods.

keep good convergence. In Figure 15, we select rating instances in each block orderly (the
partial random method) or randomly (the random method). Both methods converge to a
similar RMSE, but the training time of the partial random method is obviously shorter
than that of the random method.

5.2.3. Comparison with the state-of-the-art methods. Figure 16 presents the test RMSE and
training time of various parallel matrix factorization methods. Among the three parallel SG
methods, FPSG is faster than DSGD and HogWild. We believe that this result is because
FPSG is designed to effectively address issues mentioned in Section 3. However, we must
note that for DSGD, it is also easy to incorporate similar techniques (e.g., the partial random
method) to improve its performance.

As shown in Figure 16, CCD++ is the fastest in the beginning, but becomes slower
than FPSG. Because the optimization problem of matrix factorization is non-convex and
CCD++ is a more greedy setting than SG by accurately minimizing the objective function
over certain variables at each step, we suspect that CCD++ may converge to some local
minimum pre-maturely. On the contrary, SG-based methods may be able to escape from
a local minimum because of the randomness. Furthermore, for the Hugewiki in Figure 16,
CCD++ does not give a satisfactory RMSE. Note that in addition to the regularization
parameter used in this experiment, [Yun et al. 2014] have applied larger parameters for
Hugewiki. The resulting RMSE can be improved.

5.2.4. Comparison with CCD++ for Non-negative Matrix Factorization. We have seen that FPSG
and CCD++ are two state-of-the-art algorithms for standard matrix factorization. It is
interesting to see if FPSG can be extended to solve other matrix factorization problems.
We consider non-negative matrix factorization (NMF) that requires the non-negativity of
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Fig. 17: A comparison between CCD++ and FPSG for non-negative matrix factorization.

P and Q.

min
P,Q

∑
(u,v)∈R

(
(ru,v − pT

uqv)2 + λP ‖pu‖
2

+ λQ ‖qv‖
2)

, (10)

subject to Piu ≥ 0, Qiv ≥ 0, ∀i ∈ {1, . . . , k},
∀u ∈ {1, . . . ,m}, ∀v ∈ {1, . . . , n}.

It is straightforward to warp FPSG for solving (10) with a simple projection [Gemulla et al.
2011], and the corresponding update rules are

pu ← max(0,pu + γ (eu,vqv − λPpu))

qv ← max(0, qv + γ (eu,vpu − λQqv)),
(11)

where max(·, ·) is an element-wise maximum operation.
For CCD++, a modification for NMF has been proposed in [Hsieh and Dhillon 2011].

Like (11), it projects negative values back to zero during the coordinate descent method.
Our experimental comparison on CCD++ and FPSG is presented in Figure 17. Similar to
Figure 16, FPSG outperforms CCD++ on NMF.

5.3. Speedup of FPSG

Speedup is an indicator on the effectiveness of a parallel algorithm. On a shared memory
system, it refers to the time reduction from using one core to several cores. In this section,
we compare the speedup of FPSG with other methods. From Figure 18, FPSG outper-
forms DSGD and HogWild. This result is expected because FPSG aims at improving some
shortcomings of these two methods.

Compared with CCD++, FPSG is better on two data sets, while CCD++ is better on the
others. As Algorithm 3 and Algorithm 4 show, FPSG and CCD++ are parallelized with
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Fig. 18: Speedup of different matrix factorization methods.

very different ideas. Because speedup is determined by many factors in their respective
parallel algorithms, it is difficult to explain why one is better than the other on some
problems. Nevertheless, even though CCD++ gives better speedup in some occasions, its
overall performance (running time and RMSE) is still worse than FPSG in Figure 16. Thus
parallel SG remains a compelling method for matrix factorization.

6. DISCUSSION

We discuss some miscellaneous issues in this section. Section 6.1 demonstrates that taking
the advantage of data locality can further improve the proposed FPSG method. In Section
6.2, the selection of the number of blocks is discussed.

6.1. Data Locality and the Update Order

In our partial random method, ratings in each block are ordered. We can consider a user-
oriented or item-oriented ordering. Interestingly, these two ways may cause different costs
on the data access. For example, in Figure 8, we consider a user-oriented setting, so under
a given u

Ru,v and qv, ∀(u, v) ∈ R
must be accessed. While Ru,v is a scalar, qv, ∀(u, v) ∈ R involve many columns of the dense
matrix Q. Therefore, for going through all users, Q is needed many times. Alternatively,
if an item-oriented setting is used, for every item, PT is needed. Now if m � n, P ’s size
(k ×m) is much larger than Q (k × n). Under the user-oriented setting, it is possible that
Q (or a significant portion of Q) can be stored in a higher layer of the memory hierarchy
because of its small size. Thus we do not waste time to frequently load Q from a lower layer.
In contrast, under the item-oriented setting, P may have to be swapped out to lower-level
memory several times. Thus the cost for data movements is higher. Based on this discussion,
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Order
Data set MovieLens Netflix Yahoo!Music Hugewiki

User 2.27 22.50 173.34 1531.14
Item 2.91 43.26 294.19 1016.19

Table II: Execution time (in seconds) of 50 iterations of FPSG

# item blocks 16 16 16 16 16
# user blocks 16 32 64 128 256
iterations 47 47 47 48 47
time 3.60 3.59 3.10 3.19 3.50
# item blocks 32 32 32 32 32
# user blocks 16 32 64 128 256
iterations 47 49 48 47 48
time 3.59 3.24 3.28 3.40 4.01
# item blocks 64 64 64 64 64
# user blocks 16 32 64 128 256
iterations 48 48 48 48 47
time 3.18 3.67 3.46 3.92 5.39
# item blocks 128 128 128 128 128
# user blocks 16 32 64 128 256
iterations 47 47 48 47 48
time 3.23 3.60 4.09 5.18 9.50
# item blocks 256 256 256 256 256
# user blocks 16 32 64 128 256
iterations 48 47 47 47 47
time 3.83 4.52 5.86 9.58 17.94

Table III: The performance of FPSG on MovieLens with different number of blocks. The
target RMSE is 0.858. Time is in seconds.

we conjecture that

m� n⇒ user-oriented access should be used,

m� n⇒ item-oriented access should be used.
(12)

We compare the two update orders in Table II. For Netflix and Yahoo!Music, the user-wise
approach is much faster. From Table I, these two data sets have m � n. On the contrary,
because n� m, the item-oriented approach is much better for Hugewiki. This experiment
fully confirms our conclusion in (12).

6.2. Number of Blocks

Recall that in FPSG, R is separated to at least (s + 1) × (s + 1) blocks, where s is the
number of threads. We conduct experiments to see how the number of blocks affects the
performance of FPSG. The results on three data sets are listed in Tables III-V. In these
tables, “iterations” and “time” respectively mean the number of iterations and time used
to achieve a target RMSE value.8 We use 12 threads for the experiments.

On each data set, different numbers of blocks achieve the target RMSE in a similar
number of iterations. Clearly, the number of blocks does not seem to affect the convergence.
However, when many blocks are used, the running time increases. Taking MovieLens as an
example, FPSG takes only 3.60 seconds if 16× 16 blocks are used, while 17.94 seconds are

8The cost of experiments would be very high if the best RMSE is considered, so we use a moderate one.
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# item blocks 16 16 16 16 16
# user blocks 16 32 64 128 256
iterations 48 48 48 48 48
time 30.43 26.72 28.79 27.33 29.35
# item blocks 32 32 32 32 32
# user blocks 16 32 64 128 256
iterations 49 48 48 48 48
time 30.57 29.86 31.71 31.97 32.22
# item blocks 64 64 64 64 64
# user blocks 16 32 64 128 256
iterations 49 48 49 49 48
time 33.64 34.97 35.18 37.06 38.53
# item blocks 128 128 128 128 128
# user blocks 16 32 64 128 256
iterations 49 49 49 48 48
time 58.83 44.57 46.05 50.67 41.47
# item blocks 256 256 256 256 256
# user blocks 16 32 64 128 256
iterations 48 48 48 48 48
time 81.86 72.27 67.36 64.62 76.69

Table IV: The performance of FPSG on Netflix with different number of blocks. The target
RMSE is 0.941. Time is in seconds.

# item blocks 16 16 16 16 16
# user blocks 16 32 64 128 256
iterations 49 49 49 49 49
time 199.59 204.56 205.96 204.66 202.11
# item blocks 32 32 32 32 32
# user blocks 16 32 64 128 256
iterations 49 50 49 49 49
time 173.23 181.84 190.59 196.78 189.09
# item blocks 64 64 64 64 64
# user blocks 16 32 64 128 256
iterations 50 49 49 49 49
time 168.26 170.41 169.96 171.63 205.93
# item blocks 128 128 128 128 128
# user blocks 16 32 64 128 256
iterations 50 49 49 49 49
time 184.93 178.21 200.42 193.64 234.01
# item blocks 256 256 256 256 256
# user blocks 16 32 64 128 256
iterations 49 49 49 49 49
time 206.93 203.07 219.30 235.04 289.15

Table V: The performance of FPSG on Yahoo!Music with different number of blocks. The
target RMSE is 22.40. Time is in seconds.
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required if 256 × 256 blocks are used. To explain this result, let us check what happens
when the number of blocks increases. First, the overhead of getting a job increases because
the selection is from a pool of more blocks. Second, the execution time per block decreases
as a block contains less ratings. Third, the scheduler is executed more frequently because
the execution time per block decreases. The overall impact is that the scheduling becomes
cost-ineffective. That is, we spend innegligible time to select a block, but the block is quickly
processed. Further, we explain that the CPU utilization may be lowered when too many
blocks are used. In this situation, the scheduler takes more time to assign a block to a
thread, but during this process, another thread that needs to get a block must wait.

The above discussion suggests that we should avoid splitting R to too many blocks.
However, whether the number of blocks is too many or not depends on the data set. The
128×128 setting is too many for MovieLens, but seems adequate for Yahoo!Music. Therefore,
the selection of the number of blocks is not easy. From the experimental results, using around
2s× 2s blocks may be a suitable choice.

7. CONCLUSIONS AND FUTURE WORKS

To provide a more complete SG solver for recommender systems, we will extend our al-
gorithm to solve variants of matrix-factorization problems. In addition, to further reduce
the cache-miss rate, we will investigate non-uniform splits of the rating matrix or other
permutation methods such as Cuthill-McKee ordering. Very recently a new parallel matrix
factorization method NOMAD [Yun et al. 2014] has been released. It uses an asynchro-
nization setting to reduce the waiting time at any thread. This technique is related to our
non-blocking scheduling. Another parallel solver for matrix factorization is in GraphChi
[Kyrola et al. 2012], which is a framework for graph computation.9 Their method divides R
into m blocks, where each block contains the ratings of a particular user, and these blocks
are updated in parallel. An important difference between ours and theirs is that they do
not require blocks being processed are mutually independent. Therefore, the over-writing
problem discussed in Section 2.1 may occur. We plan to conduct comparisons between our
method, NOMAD, and GraphChi.

In conclusion, we point out some computational bottlenecks in existing parallel SG meth-
ods for shared-memory systems. We propose FPSG to address these issues and confirm
its effectiveness by experiments. The comparison shows that FPSG is more efficient than
state-of-the-art methods. Programs used for experiments in this paper can be found at

http://www.csie.ntu.edu.tw/∼cjlin/libmf/exps/

Further, based on this study, we develop an easy-to-use package LIBMF available at

http://www.csie.ntu.edu.tw/∼cjlin/libmf

for public use.
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