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Abstract. Stochastic gradient methods are effective to solve matrix fac-
torization problems. However, it is well known that the performance of
stochastic gradient method highly depends on the learning rate schedule
used; a good schedule can significantly boost the training process. In this
paper, motivated from past works on convex optimization which assign
a learning rate for each variable, we propose a new schedule for matrix
factorization. The experiments demonstrate that the proposed schedule
leads to faster convergence than existing ones. Our schedule uses the
same parameter on all data sets included in our experiments; that is, the
time spent on learning rate selection can be significantly reduced. By
applying this schedule to a state-of-the-art matrix factorization pack-
age, the resulting implementation outperforms available parallel matrix
factorization packages.
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1 Introduction

Given an incomplete matrix R ∈ Rm×n, matrix factorization (MF) finds two
matrices P ∈ Rk×m and Q ∈ Rk×n such that ru,v ' pTuqv,∀u, v ∈ Ω, where Ω
denotes the indices of the existing elements in R, ru,v is the element at the uth
row and the vth column in R, pu ∈ Rk is the uth column of P , qv ∈ Rk is the
vth column of Q, and k is the pre-specified number of latent features. This task
is achieved by solving the following non-convex problem

min
P,Q

∑
(u,v)∈Ω(ru,v − pTuqv)

2 + λ(‖pu‖2 + ‖qv‖2), (1)

where λ is a regularization parameter. Note that the process to solve P and Q
is referred to as the training process. To evaluate the quality of the used solver,
we can treat some known elements as missing in the training process and collect
them as the test set. Once P and Q are found, root-mean-square error (RMSE)
on the test set is often used as an evaluation criterion. It is defined as√

1
|Ωtest|

∑
(u,v)∈Ωtest

e2u,v, eu,v = ru,v − pTuqv, (2)
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where Ωtest represents the indices of the elements belonging to test set.
Matrix factorization is widely used in recommender systems [11], natural lan-

guage processing [16], and computer vision [9]. Stochastic gradient method1(SG)
is an iterative procedure widely used to solve (1), e.g., [7,14,2]. At each step, a
single element ru,v is sampled to obtain the following sub-problem.

(ru,v − pTuqv)
2 + λ(‖pu‖2 + ‖qv‖2). (3)

The gradient of (3) is

gu =
1

2
(−eu,vqv + λpu), hv =

1

2
(−eu,vpu + λqv). (4)

Note that we drop the coefficient 1/2 to simplify our equations. Then, the model
is updated along the negative direction of the sampled gradient,

pu ← pu − ηgu, qv ← qv − ηhv, (5)

where η is the learning rate. In this paper, an update of (5) is referred to as an
iteration, while |Ω| iterations are called an outer iteration to roughly indicate
that all ru,v have been handled once. Algorithm 1 summarizes the SG method
for matrix factorization. In SG, the learning rate can be fixed as a constant
while some schedules dynamically adjust η in the training process for faster
convergence [4]. The paper aims to design an efficient schedule to accelerate the
training process for MF.

Algorithm 1 Stochastic gradient meth-
ods for matrix factorization.

Require: Z: user-specified outer iterations
1: for z ← 1 to Z do
2: for i← 1 to |Ω| do
3: sample ru,v from R
4: calculate sub-gradient by (4)
5: update pu and qv by (5)
6: end for
7: end for

The rest sections are organized
as follows. Section 2 investigates the
existing schedules for matrix factor-
ization and a per-coordinate sched-
ule for online convex problems. Note
that a per-coordinate schedule assigns
each variable a distinct learning rate.
We improve upon the per-coordinate
schedule and propose a new schedule
in Section 3. In Section 4, experimen-
tal comparisons among schedules and state-of-the-art packages are exhibited.
Finally, Section 5 summarizes this paper and discusses potential future works.
In summary, our contributions include:
1. We propose a new schedule that outperforms existing schedules.
2. We apply the proposed schedule to an existing package. The resulting im-

plementation, which will be publicly available, outperforms state-of-the-art
parallel matrix factorization packages.

2 Existing Schedules
In Section 2.1, we investigate three schedules that are commonly used in matrix
factorization. The per-coordinate schedule that inspired the proposed method is
introduced in Section 2.2.
1 It is often called stochastic gradient descent method. However, it is actually not a

“descent” method, so we use the term stochastic gradient method in this paper.
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2.1 Existing Schedules for Matrix Factorization

Fixed Schedule (FS) The learning rate is fixed throughout the training pro-
cess. That is, η equals to η0, a pre-specified constant. This schedule is used in,
for example, [8].
Monotonically Decreasing Schedule (MDS) This schedule decreases the
learning rate over time. At the zth outer iteration, the learning rate is

ηz =
α

1 + β · z1.5
,

where α and β are pre-specified parameters. In [19], this schedule is used. For
general optimization problems, two related schedules [12,6,10] are

ηz =
α

z
and ηz =

α

z0.5
, (6)

but they are not included in some recent developments for matrix factorization
such as [4,19]. Note that [4] discusses the convergence property for the use of (6),
but finally chooses another schedule, which is introduced in the next paragraph,
for faster convergence.
Bold-driver Schedule (BDS) Some early studies on neural networks found
that the convergence can be dramatically accelerated if we adjust the learn-
ing rate according to the change of objective function values through iterations
[15,1]. For matrix factorization, [4] adapts this concept and considers the rule,

ηz+1 =

{
αηz if ∆z < 0

βηz otherwise,
(7)

where α ∈ (1,∞), β ∈ (0, 1), and η0 ∈ (0,∞) are pre-specified parameters, and
∆z is the difference on the objective function in (1) between the beginning and
the end of the zth outer iteration. Clearly, this schedule enlarges the rate when
the objective value is successfully decreased, but reduces the rate otherwise.

2.2 Per-coordinate Schedule (PCS)

Some recent developments discuss the possibility to assign the learning rate
coordinate-wisely. For example, ADAGRAD [3] is proposed to coordinate-wisely
control the learning rate in stochastic gradient methods for convex online opti-
mization. For matrix factorization, if ru,v is sampled, ADAGRAD adjusts two
matrices Gu and Hv using

Gu ← Gu + gug
T
u , Hv ← Hv + hvh

T
v ,

and then updates the current model via

pu ← pu − η0G−1/2u gu, qv ← qv − η0H−1/2v hv. (8)

ADAGRAD also considers using only the diagonal elements because matrix in-
version in (8) is expensive. That is, Gu and Hv are maintained by

Gu ← Gu +

(gu)21
. . .

(gu)2k

 , Hv ← Hv +

(hv)
2
1

. . .

(hv)
2
k

 . (9)

PengChuan
高亮
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We consider the setting of using diagonal matrices in this work, so the learning
rate is related to the squared sum of past gradient elements.

While ADAGRAD has been shown to be effective for online convex clas-
sification, it has not been investigated for matrix factorization yet. Similar to
ADAGRAD, other per-coordinate learning schedules such as [20,13] have been
proposed. However, we focus on ADAGRAD in this study because the compu-
tational complexity per iteration is the lowest among them.

3 Our Approach
Inspired by PCS, a new schedule, reduced per-coordinate schedule (RPCS), is
proposed in Section 3.1. RPCS can reduce the memory usage and computa-
tional complexity in comparison with PCS. Then, in Section 3.2 we introduce a
technique called twin learners that can further boost the convergence speed of
RPCS. Note that we provide some experimental results in this section to justify
our argument. See Section 4 for the experimental settings such as parameter
selection and the data sets used.

3.1 Reduced Per-coordinate Schedule (RPCS)

Algorithm 2 One iteration of SG algo-
rithm when RPCS is applied.

1: eu,v ← ru,v − pT
uqv

2: Ḡ← 0, H̄ ← 0

3: ηu ← η0(Gu)−
1
2 , ηv ← η0(Hv)−

1
2

4: for d← 1 to k do
5: (gu)d ← −eu,v(qv)d + λ(pu)d
6: (hv)d ← −eu,v(pu)d + λ(qv)d
7: Ḡ← Ḡ+ (gu)2d, H̄ ← H̄ + (hv)2d
8: (pu)d ← (pu)d − ηu(gu)d
9: (qv)d ← (qv)d − ηv(hv)d

10: end for
11: Gu ← Gu + Ḡ/k, Hv ← Hv + H̄/k

The cost of implementing FS, MDS,
or BDS schedules is almost zero. How-
ever, the overheads incurred by PCS
can not be overlooked. First, each co-
ordinate of pu and qv has its own
learning rate. Maintaining Gu and Hv

may need O((m + n)k) extra space.
Second, at each iteration, O(k) addi-
tional operations are needed for cal-
culating and using diagonal elements
of Gu and Hv.

These overheads can be dramat-
ically reduced if we apply the same
learning rate for all elements in pu (or
qv). Specifically, at each iteration, Gu and Hv are reduced from matrices to
scalars. Instead of (9), Gu and Hv are now updated by

Gu ← Gu +
gTugu
k

, Hv ← Hv +
hTv hv
k

. (10)

In other words, the learning rate of pu or qv is the average over its k coordinates.
Because each pu or qv has one learning rate, only (m+n) additional values must
be maintained. This storage requirement is much smaller than (m+n)k of PCS.
Furthermore, the learning rates,

η0(Gu)−
1
2 and η0(Hv)

− 1
2 ,

become scalars rather than diagonal matrices. Then the update rule (8) is re-
duced to that in (5). However, the cost of each iteration is still higher than that
of the standard stochastic gradient method because of the need to maintain Gu
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and Hv by (10). Note that the O(k) cost of (10) is comparable to that of (5).
Further, because gu and hv are used in both (10) and (8), they may need to
be stored. In contrast, a single for loop for (5) does not require the storage of
them. We detailedly discuss the higher cost than (5) by considering two possible
implementations.

1. Store gu and hv.

– A for loop to calculate gu,hv and Gu, Hv. Then gu and hv vectors are
stored.

– A for loop to update pu, qv by (8).

2. Calculate gu and hv twice.

– A for loop to calculate gu,hv and then Gu, Hv.

– A for loop to calculate gu,hv and update pu, qv by (8).

Clearly, the first approach requires extra storage and memory access. For the
second approach, its second loop is the same as (5), but the first loop causes
that each SG iteration is twice expensive. To reduce the cost, we decide to use
Gu and Hv of the previous iteration. Specifically, at each iteration, we can use a
single for loop to calculate gu and hv, update pu and qv using past Gu and Hv,
and calculate gTugu and hTv hv to obtain new Gu and Hv for the next iteration.
Details are presented in Algorithm 2. In particular, we can see that in the for
loop, we can finish the above tasks in an element-wise setting. In compared with
the implementation for (5), Line 7 in Algorithm 2 is the only extra operation.
Thus, the cost of Algorithm 2 is comparable to that of a standard stochastic
gradient iteration.

In Figure 1, we check the convergence speed of PCS and RPCS by showing the
relationship between RMSE and the number of outer iterations. The convergence
speeds of PCS and RPCS are almost identical. Therefore, using the same rate
for all elements in pu (or qv) does not cause more iterations. However, because
each iteration becomes cheaper, a comparison on the running time in Figure 2
shows that RPCS is faster than PCS.

We explain why using the same learning rate for all elements in pu (or qv)
is reasonable for RPCS. Assume pu’s elements are the same,

(pu)1 = · · · = (pu)k,

and so are (qv)’s elements. Then (4) implies that all elements in each of gv and
hv has the same value. From the calculation of Gu, Hv in (9) and the update
rule (8), elements of the new pu (or qv) are still the same. This result implies
that learning rates of all coordinates are the same throughout all iterations. In
our implementation of PCS, elements of pu and qv are initialized by the same
random number generator. Thus, if each element is treated as a random variable,
their expected values are the same. Consequently, pu’s (or qv’s) initial elements
are identical in statistics and hence our explanation can be applied.

3.2 Twin Learners (TL)

Conceptually, in PCS and RPCS, the decrease of a learning rate should be con-
servative because it never increases. We observe that the learning rate may be
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Fig. 1: A comparison between PCS and RPCS: convergence speed.
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Fig. 2: A comparison between PCS and RPCS: running time.

too rapidly decreased at the first few updates. The reason may be that the ran-
dom initialization of P and Q causes comparatively large errors at the beginning.
From (4), the gradient is likely to be large if eu,v is large. The large gradient
further results in a large sum of squared gradients, and a small learning rate
η0(Gu)−

1
2 or η0(Hv)

− 1
2 .

To alleviate this problem, we introduce a strategy called twin learners which
deliberately allows some elements to have a larger learning rate. To this end, we
split the elements of pu (or qv) to two groups {1, . . . , ks} and {ks + 1, . . . , k},
where the learning rate is smaller for the first group, while larger for the second.
The two groups respectively maintain their own factors, Gslow

u and Gfast
u , via

Gslow
u ← Gslow

u +
(gu)T1:ks(gu)1:ks

ks
, Gfast

u ← Gfast
u +

(gu)Tks+1:k(gu)ks+1:k

k − ks
.

(11)
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Fig. 3: A comparison among the average learning rates of the slow learner
(SLOW), the fast learner (FAST), and RPCS. Note that we use η0 = 0.1 and
initial Gu = Hv = 1 following the same settings in our experimental section.
Hence the initial learning rate is 0.1.

We refer to the first group as the “slow learner,” while the second group as the
“fast learner.” To make Gfast

u smaller than Gslow
u , we do not apply the second

rule in (11) to update Gfast
u at the first outer iteration. The purpose is to let the

slow learner “absorb” the sharp decline of the learning rate brought by the large
initial errors. Then the fast learner can maintain a larger learning rate for faster
convergence. We follow the setting in Section 3.1 to use Gslow

u , Hslow
v , Gfast

u , and
H fast
v of the previous iteration. Therefore, at each iteration, we have

1. One for loop going through the first ks elements to calculate (gu)1:ks , (hv)1:ks ,
update (pu)1:ks , (qv)1:ks , and obtain the next Gslow

u , Hslow
v .

2. One for loop going through the remaining k − ks elements to calculate
(gu)ks+1:k, (hv)ks+1:k, update (pu)ks+1:k, (qv)ks+1:k, and obtain the next
Gfast
u , H fast

v .
Figure 3 shows the average learning rates of RPCS (TL is not applied), and

slow and fast learners (TL is applied) at each outer iteration. For RPCS, the
average learning rate is reduced by around half after the first outer iteration.
When TL is applied, though the average learning rate of the slow learner drops
even faster, the average learning rate of the fast learner can be kept high to
ensure fast learning. A comparison between RPCS with and without TL is in
Figure 4. Clearly, TL is very effective. In this paper, we fix ks as 8% of k. We
also tried {2, 4, 8, 16}%, but found that the performance is not sensitive to the
choice of ks.

4 Experiments

We conduct experiments to exhibit the effectiveness of our proposed schedule.
Implementation details and experimental settings are respectively shown in Sec-
tions 4.1 and 4.2. A comparison among RPCS and existing schedules is in Section
4.3. Then, we compare RPCS with three state-of-the-art packages on both ma-
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Fig. 4: A comparison between RPCS with/without TL.

trix factorization and non-negative matrix factorization (NMF) in Sections 4.4
and 4.5, respectively.

4.1 Implementation

For the comparison of various schedules, we implement them by modifying
LIBMF,2 which is a parallel SG-based matrix factorization package [21]. We choose
it because of its efficiency and the ease of modification. Note that TL is applied to
RPCS in all experiments. In LIBMF, single-precision floating points are used for
data storage, and Streaming SIMD Extensions (SSE) are applied to accelerate
the computation.

The inverse square root operation required in (8) is very expensive if it is
implemented in a naive way by writing 1/sqrt(·) in C++. Fortunately, SSE
provides an instruction mm rsqrt ps(·) to efficiently calculate the approximate
inverse square roots for single-precision floating-point numbers.

4.2 Settings

Data Sets Six data sets listed in Table 1 are used. We use the same train-
ing/test sets for MovieLens, Netflix, and Yahoo!Music following [21], and the
official training/test sets for Webscope-R1 and Webscope-R2.3 For Hugewiki,4

the original data set is too large for our machine, so we sample first half of the
original data. Within this sub-sampled data set, we randomly sample 1% as the
test set, and using the remaining for training.

Platform and Parameters We run the experiment on a machine with 12
cores on two Intel Xeon E5-2620 2.0GHz processors and 64 GB memory. We
ensure that no other heavy tasks are running on the same computer.

A higher number of latent features often leads to a lower RMSE, but needs
a longer training time. From our experience, 100 latent features is an accept-

2 http://www.csie.ntu.edu.tw/~cjlin/libmf
3 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
4 http://graphlab.org/downloads/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libmf
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
http://graphlab.org/downloads/datasets/
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Data Set m n k λ #training #test
RMSE

MF NMF

MovieLens 71,567 65,133 100 0.05 9,301,274 698,780 0.831 0.835
Netflix 2,649,429 17,770 100 0.05 99,072,112 1,408,395 0.914 0.916
Webscope-R1 1,948,883 1,101,750 100 1 104,215,016 11,364,422 23.36 23.75
Yahoo!Music 1,000,990 624,961 100 1 252,800,275 4,003,960 21.78 22.10
Webscope-R2 1,823,180 136,737 100 0.05 699,640,226 18,231,790 1.031 1.042
Hugewiki 39,706 25,000,000 100 0.05 1,703,429,136 17,202,478 0.502 0.504

Table 1: Data statistics, parameters used in experiments, and the near-best
RMSE’s (see Section 4.2 for explanation) on all data sets.

able balance between speed and RMSE, so we use it for all data sets. For the
regularization parameter, we select the one that leads to the best test RMSE
among {2, 1, 0.5, 0.1, 0.05, 0.01} and present it in Table 1. In addition, P and Q
are initialized so that every element is randomly chosen between 0 and 0.1. We
normalize the data set by its standard deviation to avoid numerical difficulties.
The regularization parameter and the initial values are scaled by the same factor
as well. A similar normalization procedure has been used in [18].

Data Set
FS MDS BDS PCS
η0 α β η0 η0

MovieLens 0.005 0.05 0.1 0.05 0.1
Netflix 0.005 0.05 0.1 0.05 0.1
Webscope-R1 0.005 0.05 0.1 0.01 0.1
Yahoo!Music 0.01 0.05 0.05 0.01 0.1
Webscope-R2 0.005 0.05 0.1 0.05 0.1
Hugewiki 0.01 0.05 0.01 0.01 0.1
Table 2: The best parameters for each
schedule used.

The best parameters of each
schedule are listed in Table 2. They
are the fastest setting to reach
1.005 times the best RMSE obtained
by all methods under all parame-
ters. We consider such a “near-best”
RMSE to avoid selecting a parameter
that needs unnecessarily long running
time. Without this mechanism, our
comparison on running time can be-
come misleading. Note that PCS and
RPCS shares the same η0. For BDS, we follow [4] to fix α = 1.05 and β = 0.5,
and tune only the parameter η0. The reason is that it is hard to tune three
parameters η0, α, and β together.

4.3 Comparison among Schedules

In Figure 5, we present results of comparing five schedules including FS, MDS,
BDS, PCS, and RPCS. RPCS outperforms other schedules including the PCS
schedule that it is based upon.

4.4 Comparison with State-of-the-art Packages on Matrix
Factorization

We compare the proposed schedule (implemented based on LIBMF, and denoted
as LIBMF++) with the following packages.

– The standard LIBMF that implements the FS strategy.

– An SG-based package NOMAD [19] that has claimed to outperform LIBMF.

– LIBPMF:5 it implements a coordinate descent method CCD++ [17].

5 http://www.cs.utexas.edu/~rofuyu/libpmf

http://www.cs.utexas.edu/~rofuyu/libpmf
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Fig. 5: A comparison among different schedules.
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Fig. 6: A comparison among packages for MF.

For all packages, we use single-precision storage6 and 12 threads. The comparison
results are presented in Figure 6. For NOMAD, we use the same α and β parame-
ters in [19] for Netflix and Yahoo!Music, and use parameters identical to MDS
for MovieLens and Webscope-R1. We do not run NOMAD on Webscope-R2 and
Hugewiki because of the memory limitation. Taking the advantage of the pro-
posed schedule RPCS, LIBMF++ is significantly faster than LIBMF and LIBPMF.
Our experimental results for NOMAD are worse than what [19] reports. In [19],
NOMAD outperforms LIBMF and CCD++, but our experiments show an opposite re-
sult. We think the reason may be that in [19], 30 cores are used and NOMAD may
have comparatively better performance if using more cores.

6 LIBPMF is implemented using double precision, but we obtained a single-precision
version from its authors.
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Fig. 7: A comparison among packages for NMF.

4.5 Comparison with State-of-the-art Methods for Non-negative
Matrix Factorization (NMF)

Non-negative matrix factorization [9] requires that all elements in P and Q are
non-negative. The optimization problem is

min
P,Q

∑
(u,v)∈Ω(ru,v − pTuqv)

2 + λ(‖pu‖2 + ‖qv‖2)

subject to Pdu ≥ 0, Qdv ≥ 0, ∀d ∈ {1, . . . , k}, u ∈ {1, . . . ,m}, v ∈ {1, . . . , n}.

SG can perform NMF by a simple projection [4], and the update rules used are

pu ← max
(
0,pu − ηgu

)
, qv ← max

(
0, qv − ηhv

)
,

where the max operator is element-wise. Similarly, the coordinate descent method
in LIBPMF [5] solves NMF by projecting the negative value back to zero at each
update. Therefore, except NOMAD, all packages used in the previous experiment
can be applied to NMF. We compare them in Figure 7.

A comparison between Figure 6 and Figure 7 shows that all methods con-
verge slower for NMF. This result seems to be reasonable because NMF is a more
complicated optimization problem. Interestingly, we see the convergence degra-
dation is more severe for CCD++ (LIBPMF) than SG (LIBMF and LIBMF++). Here
we provide a possible explanation. To update pu once, CCD++ goes through
elements in the uth row of the rating matrix k times (for details, see [17]), while
SG needs only an arbitrary element in the same row. Therefore, CCD++ per-
forms a more expensive but potentially better update. However, such an update
may become less effective because of projecting negative values back to zero.
That is, even though the update accurately minimizes the objective value, the
result after projection is not as good as in standard matrix factorization.

5 Conclusions
In this paper, we propose a new and effective learning-rate schedule for SG meth-
ods applied to matrix factorization. It outperforms existing schedules according
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to the rich experiments conducted. By using the proposed method, an extension
of the package LIBMF is shown to be significantly faster than existing packages on
both standard matrix factorization and its non-negative variant. The experiment
codes are publicly available at

http://www.csie.ntu.edu.tw/~cjlin/libmf/exps

Finally, we plan to extend our schedule to other loss functions such as logistic
loss and squared hinge loss.
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